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I. Introduction

A. Motivation

As in most of the economics literature, so far in the course you have analyzed

averages. But sometimes we might be interested in other characteristics of the

distribution of our variable of interest, Yi, beyond the conditional average E[Yi|Xi].

In particular, in this chapter we are interested in the different quantiles of the

distribution of Yi given Xi. As noted below, the τth quantile of the distribution

of Yi is the value qτ for which a fraction τ of the population has Yi ≤ qτ . Quantiles

fully characterize the distribution of Yi (and conditional quantiles characterize the

distribution of Yi given Xi), so specifying them is equivalent to specify the cdf

of Yi (or that of Yi given Xi).

Sometimes, we might not necessarily be interested in the entire distribution, but

on a specific quantile. The most popular quantile is the median. We might be

interested in the median as a central measure for Yi as an alternative to the mean.

For instance, consider the case in which the data is top-coded. Making inference

on the mean is not possible, as it is affected by this censoring, but the median

might stay unaffected. In that situation, median instead of mean regression might

be appealing. The results that are presented in this chapter are general for all

quantiles of the distribution, and the median regression can be seen as a special

case of this general approach.

An example in which we are interested in non-central characteristics of the distri-

bution of our variable of interest is the study of inequality. For instance, consider

the case of wage or income inequality. Figure 1 presents hourly wage distributions

(pdfs and cdfs) for U.S. males obtained from Censuses of years 1980, 1990 and

2000. It emerges from the figure that there has been an important increase in

inequality during this period. In 1980, there is clearly a larger probability mass in

central part of the distribution, whereas in subsequent years part of this mass is

distributed over the two tails. Average wages are uninformative of this changing

feature of the data (indeed, they have been pretty flat over this period). The

1



Figure 1. Distribution of U.S. Male Wages (1980-2000)

A. Density (pdf)
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B. Distribution (cdf)
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Note: Light gray: 1980; gray: 1990; dark gray: 2000. Sample restricted to working male aged 16 to 65
who worked at least 20 weeks during the reference year and at least 10 hours per week. Hourly wages
are expressed in (log) US$ of year 2000. Data source: U.S. Census.

tools explained in this chapter allows us to study the determinants, for instance,

of changes in wages at different quantiles of the distribution (e.g. why wage at

the 20th percentile is 10-20% larger in 1980 than in subsequent years?).1

B. Unconditional Quantiles

To introduce notation and concepts, it is useful to start with general results for

unconditional quantiles. Let F (Yi) be the cdf of Yi. The τth quantile of Yi, qτ (Yi)

solves:

F (qτ (Yi)) = τ ⇔ qτ (Yi) = F−1(τ), (1)

or, in words, it is the value of Yi that leaves a fraction τ of observations below and

1− τ above. Therefore, the set {qτ (Yi), τ ∈ (0, 1)} fully describes the distribution

of Yi. The median, q0.5(Yi) is the value of Yi that leaves half of the population

above and half below.

The relationship between qτ (Yi) and F (Yi) described by equation (1) is observed

in Figure 1.ii. We usually read the plot from the horizontal axis, e.g. in year 2000,

F (2) ≈ 0.16, or, in words, there is a 16% of observations with a log hourly wage

below or equal to 2; but qτ (y) = F−1(τ) is equivalent to “reading the plot from

the vertical axis”, e.g. q0.16 = F−1(0.16) ≈ 2.0, or, in words, the 16th percentile,

i.e. the log wage that leaves the 16% of observations below it, is 2.

Table 1 presents estimates for different quantiles of the three wage distributions

plotted above. Results from the table are interesting; a sharp increase in inequality

1 Quantile and percentile are two ways of referring to the same object. For instance, the
median is also the 0.5 quantile and the 50th percentile. Other popular terms are quartiles (the
25th, 50th, and 75th percentiles), and deciles (10th, 20th,30th,...).
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Table 1—Unconditional Quantiles for Wages (1980-2000)

Percentile:
Year 10th 25th 50th 75th 90th

1980 1.96 2.41 2.84 3.18 3.50
1990 1.86 2.30 2.76 3.15 3.51
2000 1.83 2.27 2.70 3.15 3.55

Note: Sample restricted to working male aged 16 to 65 who worked at least 20 weeks during the reference
year and at least 10 hours per week. Hourly wages are expressed in (log) US$ of year 2000. Data source:
U.S. Census.

is observed over the three decades (very marked during 1980s). The 10th percentile

has decreased by around 13% (around 13 log points), meaning that the individual

that, if we order the U.S. population of working men in the year 2000 by their

wage, leaves exactly 10% of the population below him earns a wage 13% lower

than the guy that leaves 10% of the 1980 U.S. population of working men below

him. A similar pattern is observed for the first quartile (the 25th percentile) and

for the median. The third quartile (75th percentile) stayed roughly constant, and

the top decile (the 90th percentile) increased. Hence, wage inequality increased

substantially: individuals at the top of the distribution earn more in 2000 than in

1980, and individuals at the bottom earn less than before.

Sample quantiles There are two ways of computing sample quantiles given a

random sample {Y1, ..., YN}. The first one is to compute the empirical cdf and

invert it:

F̂N(r) =
1

N

N∑
i=1

1{Yi ≤ r} ⇔ q̂τ (Yi) = F̂−1N (τ) ≡ inf{r : F̂N(r) ≥ τ}.

(2)

This option is very costly computationally, because it implies ordering all obser-

vations and picking the first observation that leaves at least a fraction τ of the

sample below it.

The second alternative makes use of the following function, also known as the

“check” function, and a nice property of the quantiles.2 The check function,

applied to a given argument u, is:

ρτ (u) =

{
τ |u| if u ≥ 0

(1− τ)|u| if u ≤ 0
, (3)

2 The nickname of the function comes from its similarity with the check mark X.
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or, more compactly:

ρτ (u) = τ 1{u ≥ 0}|u|+ (1− τ)1{u ≤ 0}|u| ≡ τu+ + (1− τ)u−. (4)

This function is continuous, but not differentiable at u = 0; this later feature

prevents the estimators for quantile regression to have a closed form solution as

in the standard linear regression model.

A nice property of quantiles that allows us to estimate them in a (computation-

ally) very efficient way is:3

q̂τ (Yi) = arg min
r

N∑
i=1

ρτ (Yi − r) = arg min
r

∑
Yi≥r

τ |Yi − r|+
∑
Yi≤r

(1− τ)|Yi − r|. (5)

This result is not obvious. To clarify it, consider the first quartile, where τ =

0.25; the first quartile is the minimum of
∑

Yi≥r 0.25|Yi − r|+
∑

Yi≤r 0.75|Yi − r|.
Suppose in a sample of 99 observations that the 25th smallest observation (the

first quartile), equals 4 and that the 26th observation is equal to 8. If we let r to

be 8 instead of 4 (i.e., the 26th observation instead of the 25th), then for the first

25 observations, Yi− r would be increased by 4 (so the function would increase by

0.75× 25× 4 = 75), and for the last 74th, Yi − r would be decreased by 4 (so the

function would decrease by 0.25× 74× 4 = 74). Therefore, the 26th observation

is a worse candidate than the 25th as a minimizer for the function.

Standard errors Deriving the asymptotic distribution of sample quantiles is

out of the scope of this course. The main reason for this is that, given the non-

differentiability of the objective function, the asymptotic normality result cannot

be established in the standard way. Nonetheless, we can still get an asymptotic

normality result using other approaches under suitable conditions, following the

more general results for non-smooth GMM estimators. When this is possible, the

resulting asymptotic distribution is:

√
N(q̂τ (Yi)− qτ (Yi))→

d
N
(

0,
τ(1− τ)

[f(qτ (Yi))]2

)
, (6)

where f(·) is the pdf of the distribution F (·).
In practice, standard errors are typically computed using bootstrap (when com-

putationally feasible). However, this asymptotic result is very useful to understand

what determines the precision of the estimates. The numerator of the asymptotic

variance, τ(1−τ), tends to make q̂τ (Yi) more precise in the tails, whereas the den-

sity term in the denominator tends to make q̂τ (Yi) less precise in regions of low

3 This result is the analogue of the population counterpart qτ (Yi) = argminr E[ρτ (Yi − r)].
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Figure 2. Distribution of U.S. Male Wages (college vs non-college)

A. Density (pdf)
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B. Distribution (cdf)
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Note: Solid: college; dashed: noncollege. Light gray: 1980; gray: 1990; dark gray: 2000. Sample
restricted to working male aged 16 to 65 who worked at least 20 weeks during the reference year and at
least 10 hours per week. Hourly wages are expressed in (log) US$ of year 2000. Individuals with high
school or less are considered as noncollege, whereas individuals with some college or a college degree are
considered as college educated. Data source: U.S. Census.

density (usually the tails). The latter effect typically dominates so that quantiles

closer to the extremes are estimated with less precision.

C. Nonparametric Conditional Quantiles

In this chapter, we are interested in conditional quantiles. The quantile regres-

sion model is semiparametric in the sense that it is described by some parameters,

but we do not make distributional assumptions. Before we enter into it, we de-

scribe a nonparametric example to motivate our interest in conditional quantiles.

Let us revisit our example in Table 1 and Figure 1. Consider the case in which

we want to check whether the increasing wage inequality is the result of higher

wage earners being increasingly more educated and lower wage earners being less,

or, instead, the result holds separately for both college and non-college workers.

In the remaining of this section we explore this possibility by comparing empirical

distributions for the two groups.

We are, hence, interested in estimating qτ (Yi|Xi), where in this case the vectorXi

is indeed a scalar that takes the value of 1 if the individual has college education

and 0 otherwise. The nonparametric approach computes sample quantiles for

the restricted samples of college and high school workers respectively. Figure 2

plots sample wage distributions for college and non-college educated in 1980, 1990

and 2000. The figure reveals a very different over-time evolution of the wage

distribution for the two groups of workers. In particular, the increase in wage

inequality has been particularly severe among less educated.

The figure is read in terms of quantiles as follows: college education “increases
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the 20th percentile” by around 30% (around 30 log points) in 1980, and around

40% (around 40 log points) in 2000, whereas it “increases the 80th percentile” by

around 30% in 1980 and around 50% in 2000. In other words, it emerges from the

figure that the wage dispersion was similar in 1980 for college and non-college,

and it was larger for less educated in 2000.

A relevant point to emphasize about the terminology used in quantile regres-

sions can be seen in the previous paragraph. When we say that “college education

increased the 20th percentile by...” we do not mean that the wage of a particular

individual if she had college education would be increased by such amount. In-

stead, the quantile regression coefficients, in the same way that this nonparametric

comparison, talk about effects on distributions and not on individuals. Therefore,

it means that the particular quantile of the distribution of wages for individuals

with college education is larger than the corresponding quantile of the distribution

of wages for individuals without college education by such amount.

Although nonparametric comparisons are very appealing when we have a little

number of variables to condition upon, each of them with a small amount of points

of support, it becomes unfeasible as the number of regressors and/or the number

of points of support of each of them grow. This situation, known as the “curse

of dimensionality”, is common to all nonparametric methods, but it is especially

severe in the case of quantiles (e.g. when compared to averages) because we are

making inference on the whole distribution instead of on a single moment.

II. Quantile Regression

A. Conditional Quantiles (revisited)

We have seen in the end of the previous section what is the intuition behind

conditional quantiles using the nonparametric example. More formally, we can

generalize the notation and results shown before for unconditional quantiles to

conditional ones.

To define them, we simply have to replace the marginal distribution of Yi, F (Yi),

for its conditional counterpart F (Yi|Xi). Given this:

qτ (Yi|Xi) = F−1(τ |Xi). (7)

Population conditional quantiles also satisfy:

qτ (Yi|Xi) = arg min
q(Xi)

E[ρτ (Yi − q(Xi))]. (8)

In the nonparametric case, we leave qτ (Yi|Xi) unrestricted, so we have to estimate

it for every potential value of Xi. This is what we did before, and it was easy
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because there was only one regressor which only took two values, but it easily

becomes unfeasible as the number of points of support grow.

The quantile regression model, introduced by Koenker and Basset (1978), im-

poses some parametric structure to qτ (Yi|Xi)) in order to allow us to identify it

when it is not feasible nonparametrically. In particular, it usually imposes some

sort of linear structure in the relationship between Yi and Xi at the different points

of the distribution.

B. The Quantile Regression Model

Location-scale model This is a very simple model that helps us to connect

quantile regression methods with classical regression. Consider the following

model with conditional heteroskedasticity:

Yi = µ(Xi; β) + σ(Xi; γ)Ui, (9)

where Ui|Xi ∼ G, independent of Xi. In this model:

qτ (Yi|Xi) = µ(Xi; β) + σ(Xi; γ)G−1(τ). (10)

In this model, all dependence of Yi on Xi occurs through mean translations —

location— (given by µ(Xi; β)) and variance re-scaling (given by σ(Xi; γ)):

∂qτ (Yi|Xi)

∂Xi

=
∂µ(Xi; β)

∂Xi

+
∂σ(Xi; γ)

∂Xi

G−1(τ). (11)

Hence, under homoskedasticity, quantile curves are parallel in this model. Under

heteroskedasticity, they are not parallel, but the model is still very restrictive, as

the percentage increase in the slope between any pair of quantiles is the same,

regardless of the quantiles that are compared.4

General quantile regression model A more general quantile regression model

is the following:

qτ (Yi|Xi) = X ′iβτ . (12)

This model imposes linearity in Xi, but it allows for different effects on different

quantiles.

It is important to recall that we have a continuum of quantiles (every individual

in the population represents one quantile, and we have infinite individuals in the

population). Therefore, in a way, in this model, every individual has a different

4 More formally, ∂ ln[qτ1(Yi|Xi) − qτ2(Yi|Xi)]/∂Xi is the same for any pair of quantiles τ1
and τ2.
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coefficient βτ . This model, therefore, can be seen as a random coefficients model,

where βτ = β(u).

C. Estimation

The estimation of the quantile regression model is analogous to the uncondi-

tional estimation of quantiles. In particular, we use the check function, so that:

β̂τ = arg min
b

N∑
i=1

ρτ (Yi−X ′ib) = arg min
b

∑
Yi≥X′

ib

τ |Yi−X ′ib|+
∑

Yi≤X′
ib

(1− τ)|Yi−X ′ib|.

(13)

As we saw for the unconditional case, this problem does not have an analytic

solution (unlike in OLS), but this minimization problem is (computationally) easy

to solve.

A particular case of quantile regression is the median regression. In this case,

the check function becomes simply an absolute value, and the estimator is often

known as Least Absolute Deviations (LAD) estimator:

β̂LAD ≡ β̂0.5 = arg min
b

N∑
i=1

|Yi −X ′ib|. (14)

This estimator clearly connects with the Least Squares estimator, with the abso-

lute loss replacing the squared one in the minimization problem.

Example Following with our example of wages, consider the following quantile

regression model:

qτ (lnWi|Ei, Xi, X
2
i ) = β(0)

τ + β(E)
τ Ei + β(X)

τ Xi + β(X2)
τ X2

i . (15)

Figure 3 plots quantile regression coefficients for education, i.e. {β(E)
τ : τ ∈ (0, 1)}.

As it emerges from the comparison of the three pictures, returns to education have

a different shape for different years, but importantly they have increased all over

the distribution except below the bottom quintile (i.e. below the 20th percentile).

This increase in the difference in returns to schooling contributed to increase wage

inequality.

Figure 4 plots the 10th, 25th, 50th, 75th and 90th percentiles of wages con-

ditional on experience. Notice that the quadratic term in experience allows us

to have a nonlinear (quadratic in this case) relationship between experience and

wages, that seems to be supported by the data at all quantiles. The lines are quite

parallel and stable over time, which indicates that experience does not seem to

generate much inequality.
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Figure 3. Quantile Regression Coefficients (Education)
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C. 2000
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Note: Random sample of 10,000/year working male aged 16 to 65 who worked at least 20 weeks during
the reference year and at least 10 hours per week. Hourly wages are expressed in (log) US$ of year 2000.
Data source: U.S. Census.

Figure 4. Quantiles of Wages Conditional on Experience

A. 1980

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

L
og

 h
ou

rl
y 

re
al

 w
ag

e

0 10 20 30 40 50
(Potential) Experience

B. 1990

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

L
og

 h
ou

rl
y 

re
al

 w
ag

e

0 10 20 30 40 50
(Potential) Experience

C. 2000
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Note: Quantiles computed with a random sample of 10,000/year working male aged 16 to 65 who worked
at least 20 weeks during the reference year and at least 10 hours per week. Hourly wages are expressed
in (log) US$ of year 2000. The scatter plot depicts a random sample of 1,000 observations. Data source:
U.S. Census.

D. Quantile Regression with Censoring

Many times we have censored data. In our particular example with wages,

it might be that wages are top-coded. If this is the case, mean estimates are

consistent anymore, but the median still is (subject to the censoring point being
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above it). In particular, all quantiles below the censoring point is unaffected by

the censoring.

More formally, in the censoring case, if wages are top-coded above a value c, we

observe Y ∗i = min(y, c) instead of y. Then, using an idea by Powell (1986), we

can exploit the fact that qτ (Y
∗|Xi) = min(X ′iβτ , c). Hence, we estimate βτ as:

β̂cτ = arg min
b

N∑
i=1

ρτ (Yi −min(X ′ib, c)). (16)

III. Quantile Treatment Effects (QTE)

A. What We Do (and What We Do Not Do)

As in the standard regression case, making causal inference is hard, because re-

gression estimates may be contaminated by omitted variable biases. IV methods

for quantile regressions, however, are not so simple, and are still under develop-

ment these days. When it comes to discrete variables and discrete instruments,

however, approaches become simpler. In this context, Abadie, Angrist, and Im-

bens (2002) introduced the Quantile Treatment Effects (QTE) estimator.

Our conditional quantiles of interest are the following:

qτ (Yi|Xi, Di, D1i > D0i) = ατDi +X ′iβτ , (17)

where Di takes the value of one if the individual is treated, and we condition on

the fact that the individual is a complier (D1i > D0i).

In particular, we are interested in ατ , which is:

ατ = qτ (Y1i|Xi, D1i > D0i)− qτ (Y0i|Xi, D1i > D0i). (18)

What does this parameter tell us? Consider, as an example, the case in which

we want to implement a subsidy for college education (in order to increase college

attendance). We want to disentangle what is the effect of increasing college on the

distribution of wages. As the decision of attending college is not random, we need

an instrument to disentangle what would be the effect of increasing education on

wages. In particular, we need an instrument that generates a group of compliers

that would attend college if it was cheaper but that they do not attend because

they find it too expensive. Distance to college might be a good instrument, as the

compliers of this group (individuals who do not go if they live far away but go if

they live close by) are individuals that would react to the subsidy and change their

behavior from not going to going. Hence, our quantile comparison of interest is not
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between the distribution of wages for individuals who effectively attended college

and the one of individuals who did not, but, instead, the distribution of wages

of individuals that went to college because it was close to home, but that would

have not gone if it had been further away, and that of individuals that did not go

because it was far, but would have gone if it had been close. This comparison is

what ατ represents, and what we can identify using this instrument.

However, ατ does not tell us anything about how the program changed the

quantiles of the unconditional distributions of Y1i and Y0i. Also, it does not give

us the conditional quantile of the individual treatment effects qτ (Y1i−Y0i), unlike

in the average case: the difference in quantiles is not the quantile of the difference!

(although, luckily, economists are typically more interested in the difference in the

distributions than in the distribution of the differences)

B. The QTE Estimator

The previous model could be (in theory) estimated consistently in the standard

way on the population of compliers. The problem, however, is that we do not

observe whether an individual is a complier or not. Alternatively, we can use the

Abadie (2003) weighting procedure to compute the appropriate expectation to be

minimized.

Let us start with the Abadie (2003) result. If our instrument Zi satisfies the

standard assumptions given Xi, and let g(Yi, Xi, Di) be any measurable function

of (Yi, Xi, Di) with finite expectation, then:

E[g(Yi, Xi, Di)|D1i > D0i] =
E[κig(Yi, Xi, Di)]

E[κi]
, (19)

where:

κi ≡ 1− Di(1− Zi)
1− Pr(Zi = 1|Xi)

− (1−Di)Zi
Pr(Zi = 1|Xi)

. (20)

The main idea is that the operator κi “finds compliers”. The intuition behind

this is that individuals with Di(1 − Zi) = 1 are always-takers as D0i = 1 for

them; similarly, individuals with (1 −Di)Zi = 1 are never-takers, as D1i = 0 for

them; hence, if the monotonicity assumption holds, the left-out are the compliers.

Indeed:

E[κi|Yi, Xi, Di] = Pr(D1i > D0i|Yi, Xi, Di). (21)

Given this result, Abadie, Angrist, and Imbens (2002) developed the QTE esti-
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mator as the sample analogue to:

(ατ , β
′
τ ) = arg min

(a,b′)
E[ρτ (Yi − aDi −X ′ib)|D1i > D0i]

= arg min
(a,b′)

E[κiρτ (Yi − aDi −X ′ib)]. (22)

Note that the denominator from Abadie’s result is irrelevant, as it does not include

the parameters of interest.

There are several aspects that worth a mention. First is that κi needs to be

estimated (and standard errors should take this into account —bootstrapped stan-

dard errors, including the estimation of κi in the bootstrapping, do). Second, κi

is negative when Di 6= Zi (instead of zero), which makes the regression minimand

non-convex. To solve this problem, we can apply the law of iterated expectations,

so that we transform the problem into:

(ατ , β
′
τ ) = arg min

(a,b′)
E[E[κi|Yi, Xi, Di]ρτ (Yi − aDi −X ′ib)]. (23)

This solves the problem as E[κi|Yi, Xi, Di] = Pr(D1i > D0i|Yi, Xi, Di) is a proba-

bility and, hence, is between zero and one. This trick makes indeed the problem

very easy to implement in practice. Note that:

E[κi|Yi, Xi, Di] = 1−Di(1− E[Zi|Yi, Xi, Di = 1])

1− Pr(Zi = 1|Xi)
− (1−Di)E[Zi|Yi, Xi, Di = 0]

Pr(Zi = 1|Xi)
.

(24)

A very simple two-stage method consists of the following two steps:

1) Estimate E[Zi|Yi, Xi, Di] with a Probit of Zi on Yi and Xi separately for

Di = 0 and Di = 1 subsamples, and Pr(Zi = 1|Xi) with a Probit of Zi on

Xi with the whole sample. Construct Ê[κi|Yi, Xi, Di] using the fitted values

from the previous expressions.5

2) Estimate the quantile regression model with the standard procedure (e.g.

with qreg) using these predicted kappas as weights.

One should then compute the correct standard errors taking into account that the

weights are estimated instead of the true weights as we discussed above.

5 It may happen that, for some observations, the predicted value goes below 0 or above 1;
in this case, replace the values below 0 by 0 and the values above 1 by 1.
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