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I. Introduction

With data from a randomized experiment, the simple comparison of the mean

outcome in treatment and control groups (which we can define here as the “dif-

ference” estimator) provides an unbiased and consistent estimate of the average

treatment effect, as discussed in Chapter 2. This is so because the randomization

ensures there are no systematic differences in any “pre-treatment” variables, and,

hence, confounding factors are balanced.

In subsequent chapters we have dealt with deviations from the independence

assumption. In Chapter 3, and in sharp RD designs in Chapter 5, we proposed

different techniques that balance out systematic differences among treated and

control units, creating comparable groups, and, thus, ruling out confounders. In

Chapter 4 and fuzzy RD designs in Chapter 5 we tried to get causal effects by

using instrumental variables. However, good instruments are hard to find, and we

would like to have other techniques to rule out unobserved confounders.

The approach in this chapter follows an approach that is closer to the first of

the two broad approaches described in the previous paragraph. This approach

proposes an alternative method to eliminate confounders that are fixed over time,

using repeated observations over time. We assume that, even though treated and

control groups are not comparable, the evolution of the outcome pre- and post-

treatment would be the same in the absence of treatment. In other words, we

assume that treated and control groups have the same counterfactual trends, even

if the levels differ. In this case, we use data on treatment and control groups be-

fore the treatment to estimate the pre-treatment difference between these groups

and then compare this difference with the difference in average outcomes after the

treatment group received the treatment. Intuitively, we can use the pre-treatment

comparison in outcomes among the two groups (none of them treated yet) to ob-

tain and estimate of the selection bias, and then subtract that estimated selection

bias to the difference in outcomes post-treatment to obtain the treatment effect.

II. Difference in Differences Setup

The figure below illustrates this discussion. Let Yit denote the observed outcome

for individual i in period t ∈ {0, 1}, and letDi = 1 if the individual is in the treated
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group, with Di = 0 otherwise. Note that we did not subscript Di by time in this

notation, as Dit = 0 when t = 0 for both treated and untreated individuals. For

treated individuals we observe E[Yit|Di = 1, t = 0] = E[Y0it|Di = 1, t = 0], because

at t = 0 no observation is treated, and E[Yit|Di = 1, t = 1] = E[Y1it|Di = 1, t = 1],

because these individuals are treated at t = 1. Likewise, for controls, we observe

E[Yit|Di = 0, t = 0] = E[Y0it|Di = 0, t = 0] as well, but, in this case, the mean

observed in the second period is E[Yit|Di = 0, t = 1] = E[Y0it|Di = 0, t = 1]. What

we do not observe is E[Y0it|Di = 1, t = 1], which we need to compute the average

treatment effect on the treated:

What the figure suggests is to use the same trend observed for untreated individ-

uals to predict the counterfactual trend for treated individuals in the absence of

treatment. Thus, our prediction of the counterfactual value E[Y0it|Di = 1, t = 1] is:

E[Y0it|Di = 1, t = 1] = E[Yit|Di = 0, t = 1]︸ ︷︷ ︸
level for controls at t=1

+ {E[Yit|Di = 1, t = 0]− E[Yit|Di = 0, t = 0]}︸ ︷︷ ︸
difference in levels at t=0 difference

, (1)

which builds on the fundamental assumption that E[Y0i1−Y0i0|Di = 1] = E[Y0i1−
Y0i0|Di = 0]. This assumption is known as the common trend assumption, and,

where there are multiple periods before treatment, it is typically checked by show-

ing that trends before treatmend coincided. Hence, the difference in differences

coefficient (which is an average treatment effect on the treated) is:

β = E[Y1it|Di = 1, t = 1]− E[Y0it|Di = 1, t = 1]

= {E[Yit|Di = 1, t = 1]− E[Yit|Di = 1, t = 0]}

− {E[Yit|Di = 0, t = 1]− E[Yit|Di = 0, t = 0]}. (2)
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Intuitively, β measures the difference between the increase in average observed

outcomes for treated and the increase in average observed outcomes for controls.

III. Difference in Differences in the Regression Context

The difference in differences coefficient can be obtained as the β coefficient in

the following regression:

Yit = β0 + βDDi + βTTit + βDiTit + Uit, (3)

where Tit = 1 if individual i is treatment period t = 1, and Tit = 0 otherwise.

With a proof that is very similar than those done in previous chapters, one can

prove that β0 is E[Yit|Di = 0, t = 0], β0 + βD = E[Yit|Di = 1, t = 0], β0 + βT =

E[Yit|Di = 0, t = 1], and β is the difference in differences coefficient.

This regression model can be expanded in several ways. First, by including

further periods, both before, and after the treatment. In such case, Tit is not a

time dummy but, instead, a dummy that equals one in the post-treatment period.

One could additionally include time effects, but the interaction term should be

with the “post” dummy only. Second, the regression allows for controls, Xit. In

this context, the difference between the regression coefficient and the difference

in differences coefficient (obtained nonparametrically from differences in means)

is analogous to the difference between matching and regression coefficients dis-

cussed in Chapter 3. Third, actually there is no need for panel data to estimate

(3): repeated cross sections should suffice. However, in the repeated cross-section

context, the researcher needs to sustain the assumption that the sample compo-

sition does not vary over time, which is satisfied by construction with panel data.

Finally, some authors use the same regression setup to build placebo exercises. A

placebo regression is a regression that simulates the difference in differences anal-

ysis but for a point in time or group of individuals that resemble the treatment

period or group but that was actually not treated. It is a “placebo” in the sense

that it looks as if treatment was administered, but it actually was not.

IV. Triple Differences Model

Some authors pose triple-differences models, in which the difference in differ-

ences assumption does not hold, but the change in trends is assumed to be the

same across sub-groups, some of which should be more affected than others. For

example, let Gi denote the (say sociodemographic) group to which individual i
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belongs. Then, the triple-differences model is:

Yit = β0 + βDDi + βTTit + βGGi + βGDGiDi

+ βGTGiTit + βDTDiTit + βGiDiTit + Uit. (4)

For example, consider the analysis of maternity leave policies on labor supply.

These policies affect young women but do not affect old women. In this context,

even though the labor supply of old women is systematically different than that of

young women (level difference), this systematic difference persists before and after

the policy, and, therefore, we can use old women as a control group in a differences

in differences setting. Now imagine that, at the same time that the maternity leave

policy is introduced, a tax reform occurs that particularly affects the labor supply

of young workers relative to old workers. This additional policy would constitute

a counfounder that would break the common trend assumption, because it affects

the treated group only in the “post-reform” period, as the maternity leave policy

change. However, we have a different group of people, males, that are equally

affected by the tax reform, but not affected by the maternity leave policy. In

this context, we can use a difference-in-difference estimation for male to “remove”

the effect of taxes from the composite effect on female (taxes plus maternal leave

policy). In this case, the key assumption is that taxes affect male of different

ages in the same way that they affect female. The triple difference coefficients are

easily interpreted in the following figure:

Male

Female

V. Synthetic Control Methods

Consider the case in which we have several periods before treatment is imple-

mented, and, thus, we can check the common trends assumption. For example,
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consider the case where one state implements a policy and other states do not.

With enough data, we could define as the control the state that has the most

similar pre-trend compared to the treated group (or alternatively, all non-treated

states). However, often no state is the perfect counterfactual for another.

Synthetic control methods use longitudinal data to build the weighted average

of non-treated units that best reproduces the characteristics of the treated unit

over time prior to the treatment. Thus, we build an artificial control that has the

best possible pre-trend possible, and then we compute the difference in differences

estimate using such synthetic control group.

VI. Fixed effects and panel data

As we indicated above, there is no need to have panel data to estimate a dif-

ference in differences model. However, in the presence of panel data, one would

estimate the following model.

Yit = β0 + ηi + δt + βDit + Uit. (5)

In this regression model, the individual fixed effect ηi would capture the average

outcome for each individual in the absence of treatment. Therefore, it would

provide an individual-specific estimate of “E[Y0it|i]”, the average Y0it for individual

i across time periods t. The time effects δt captures the average over-time trend

in the absence of treatment. For example, in the two-period model, intuitively

it would give us the counterpart of βT in the simple regression above. Finally, β

identifies the average treatment effect on the treated (when the treatment effect

is constant), and it is identified from treated individuals, whose treatment status

Dit changes over the observation period.

Notice that this regression allows us to identify the treatment effect from mul-

tiple treatments implemented at different points in time. This would mean that

some observations contribute as control group in some treatments and as treat-

ment group in others. As shown in Godman and Bacon (2021), the OLS estimate

would provide a weighted average of all possible two-by-two difference in dif-

ferences estimators for each policy change. The specific weights depend on the

absolute size of each subsample (treated and control groups) and also about the

timing of the treatments. In particular, weights are larger for treatments in which

the sizes of treated and control are similar, and treatments that happen at a closer

point to the middle of the time window considered. A direct implication of this is

that changing the spacing of time periods changes the weights and therefore the

obtained estimate, even if the underling difference-in-differences are themselves
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constant. This is so, of course, unless the different treatment effects are indeed

constant across treatments, in which case, we obtain the average treatment effect

on the treated.

VII. Event studies

A natural implication of the previous paragraph is that, whether we have panel

data or not, we can construct event studies in which timing is centred around

the first treatment date. Let T0i denote the timing in which individual i becomes

treated. Define Sit ≡ t−T0i as the time period relative to the event. For untreated

units, we may need to define the date when the “event” would start for them. In

some cases, this is given by the event study itself (e.g. birth of first child in the

child penalty example, discussed in class).

Intuitively, what we do is to transform regression (3), or any of its variants

described in the paragraph below that equation, to the following regression:

Yit = β0 + βDDi + βTSit + βDiSit 1{Sit ≥ 0}+ Uit. (6)

For example, in the child penalty example, we capture βD by gender dummies,

which capture the wage difference between men and women in the year prior of

the birth of their first child. The term βT is now captured by dummies or trends

of period in the event (i.e., years since the birth of the first child, with negative

values for years prior the child). Finally, the treatment effect β is identified from

the differential change in wage for men and women in the years after the birth

of the first child. Once again, even though this can be captured by time trends,

this is often done including time dummies, in which case, we can allow for the

dummies for Sit < −1 to be different from zero, as we only need to normalize the

one for Sit = −1 to be equal to zero.
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