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I. The fundamental RD assumption

In what we have seen so far, the main assumption in the matching context is

conditional independence, (Y1i, Y0i) ⊥⊥ Di|Xi, whereas in the IV context we assume

orthogonality and relevance of the instrument, (Y1i, Y0i) ⊥⊥ Zi|Xi and Di 6⊥⊥ Zi|Xi

respectively. The relevance condition can also be expressed as P (Di = 1|Zi = z) 6=
P (Di = 1|Zi = z′) for some z 6= z′. In regression discontinuity (RD) we

consider a situation where there is a continuous variable Zi that is not necessarily a

valid instrument (it does not satisfy the exogeneity assumption), but that it is such

that treatment assignment is a discontinuous function of Zi. The basic asymmetry

on which identification rests is discontinuity in the dependence of Di on Zi but

continuity in the dependence of (Y1i, Y0i) on Zi. RD methods have much potential

in economic applications because geographic boundaries or program rules (e.g.

eligibility thresholds) often create usable discontinuities.

More formally, discontinuity in treatment assignment but continuity in potential

outcomes means that there is at least a known value z = z0 such that:

lim
z→ z+0

P (Di = 1|Zi = z) 6= lim
z→ z−0

P (Di = 1|Zi = z) (1)

lim
z→ z+0

P (Yji ≤ r|Zi = z) = lim
z→ z−0

P (Yji ≤ r|Zi = z) (j = 0, 1) (2)

Implicit regularity conditions are: (i) the existence of the limits, and (ii) that

Zi has positive density in a neighborhood of z0. We abstract from conditioning

covariates for the time being for simplicity.

Early RD literature in Psychology (e.g. Cook and Campbell, 1979) distin-

guishes between sharp and fuzzy designs. In the former, Di is a deterministic

function of Zi:

Di = 1{Zi ≥ z0}, (3)

whereas in the latter is not. The sharp design can be regarded as a special case

of the fuzzy design, but one that has different implications for identification of
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treatment effects. In the sharp design:

lim
z→ z+0

E[Di|Zi = z] = 1

lim
z→ z−0

E[Di|Zi = z] = 0.
(4)

II. Homogeneous Treatment Effects

Like in the IV setting, the case of homogeneous treatment effects is useful to

present the basic RD estimator. Suppose that α = Y1i − Y0i is constant, so that:

Yi = αDi + Y0i (5)

Taking conditional expectations given Zi = z and left-side and right-side limits:

lim
z→ z+0

E[Yi|Zi = z] = α lim
z→ z+0

E[Di|Zi = z] + lim
z→ z+0

E[Y0i|Zi = z]

lim
z→ z−0

E[Yi|Zi = z] = α lim
z→ z−0

E[Di|Zi = z] + lim
z→ z−0

E[Y0i|Zi = z],
(6)

which leads to the consideration of the following RD parameter:

α =

lim
z→ z+0

E[Yi|Zi = z]− lim
z→ z−0

E[Yi|Zi = z]

lim
z→ z+0

E[Di|Zi = z]− lim
z→ z−0

E[Di|Zi = z]
, (7)

which is determined provided the relevance condition in Equation (1) is satisfied,

and equals α provided the independence condition in Equation (2) holds.

In the case of a sharp design, the denominator is unity so that:

α = lim
z→ z+0

E[Yi|Zi = z]− lim
z→ z−0

E[Yi|Zi = z], (8)

which can be regarded as a matching-type situation, in the same way that the

general case can be regarded as an IV-type situation. So the basic idea is to obtain

a treatment effect by comparing the average outcome left of the discontinuity with

the average outcome to the right of discontinuity, relative to the difference between

the left and right propensity scores. Intuitively, considering units within a small

interval around the cutoff point is similar to a randomized experiment at the

cutoff point.

III. Heterogeneous Treatment Effects

Now suppose that:

Yi = αiDi + Y0i. (9)

It is useful again to distinguish sharp and fuzzy designs.
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A. Sharp design

In the sharp design, since Di = 1{Zi ≥ z0} we have:

E[Yi|Zi = z] = E[αi|Zi = z]1{z ≥ z0}+ E[Y0i|Zi = z]. (10)

In other words, conditioning on a value z for Zi, individuals are treated if z ≥ z0,

and thus we observe Yi = Y1i = αi + Y0i, and untreated if z ≤ z0, in which case

we observe Yi = Y0i. Thus, to obtain an average treatment effect for individuals

at the threshold value z0, that is, αRD defined as:

αRD ≡ E[αi|Zi = z0], (11)

we rewrite (10) as:

E[Yi|Zi = z] = E[αi|Zi = z]1{z ≥ z0}+ E[Y0i|Zi = z]± E[αi|Zi = z0]1{z ≥ z0}

= αRD 1{z ≥ z0}+ E[Y0i|Zi = z]

+ (E[αi|Zi = z]− E[αi|Zi = z0])1{z ≥ z0}

≡ αRDDi + kz0(z). (12)

This equation corresponds to a situation of selection on observables, and the

term kz0(z) “controls” for the selection bias (this type of functions are indeed

known as a control functions, and including them in the regression is know as

a control function approach). Therefore, the OLS population coefficient on

Di in the equation:

Yi = αRDDi + kz0(Zi) + wi (13)

equals E[αi|Zi = z0], which is the causal effect of interest (an average treatment

effect for individuals with Zi right below or above the discontinuity).

The control function kz0(z) is nonparametrically identified (e.g. including a

high-order polynomial in Zi —or Zi − z0— in the OLS regression interacted with

a dummy 1{Zi ≥ z0}). Note that if the treatment effect is homogeneous, k(z)

coincides with E[Y0i|Zi = z], but not in general.

B. Fuzzy design

In the fuzzy design, Di not only depends on 1{Zi ≥ z0}, but also on other unob-

served variables. Thus, Di is an endogenous variable in Equation (13). However,

we can still use 1{Zi ≥ z0} as an instrument for Di in such equation to identify
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αRD, at least in the homogeneous case. The connection between the fuzzy de-

sign and the instrumental variables perspective was first made explicit in van der

Klaaw (2002).

Next, we discuss the interpretation of αRD in the fuzzy design with heteroge-

neous treatment effects, under two different assumptions. Consider first the weak

conditional independence assumption:

(Y1i, Y0i) ⊥⊥ Di|Zi = z for z near z0, (14)

that is, for z = z0 ± e, where e is an arbitrarily small positive number, or simply:

F (Yji|Di = 1, Zi = z0 ± e) = F (Yji|Zi = z0 ± e) (j = 0, 1). (15)

Thus, we are assuming that treatment assignment is exogenous in the neighbor-

hood of z0. An implication is:

E[αiDi|Zi = z0 ± e] = E[αi|Zi = z0 ± e]E[Di|Zi = z0 ± e]. (16)

Proceeding as before, we have:

lim
z→ z+0

E[Yi|Zi = z] = lim
z→ z+0

E[αi|Zi = z]E[Di|Zi = z] + lim
z→ z+0

E[Y0i|Zi = z]

lim
z→ z−0

E[Yi|Zi = z] = lim
z→ z−0

E[αi|Zi = z]E[Di|Zi = z] + lim
z→ z−0

E[Y0i|Zi = z].
(17)

Noting that limz→ z+0
E[αi|Zi = z] = limz→ z−0

E[αi|Zi = z] = αRD, subtracting one

equation from the other, and rearranging the terms we obtain:

αRD ≡ E[Y1i − Y0i|Zi = z0]

=

lim
z→ z+0

E[Yi|Zi = z]− lim
z→ z−0

E[Yi|Zi = z]

lim
z→ z+0

E[Di|Zi = z]− lim
z→ z−0

E[Di|Zi = z]
. (18)

That is, the RD parameter can be interpreted as the average treatment effect at z0.

Hahn, Todd, and van der Klaaw (2001) also consider an alternative LATE-type

of assumption. Let Dzi be the potential assignment indicator associated with

Zi = z, and for some ε̄ > 0 and any pair (z0 − ε, z0 + ε) with 0 < ε < ε̄ suppose

the local monotonicity assumption:

Dz0+ε,i ≥ Dz0−ε,i for all units i in the population. (19)

Sometimes, the local conditional independence assumption could be problematic,

especially in fuzzy designs, but the monotonicity assumption is not. In such case,
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it can be shown that αRD identifies the local average treatment effect at z = z0:

αRD = lim
ε→ 0+

E[Y1 − Y0|Dz0+ε −Dz0−ε = 1] (20)

that is, the ATE for the units for whom treatment changes discontinuously at z0.

If the policy is a small change in the threshold for program entry, the LATE pa-

rameter delivers the treatment effect for the subpopulation affected by the change,

so that in that case it would be the parameter of policy interest.

IV. Estimation Strategies

There are parametric and semiparametric estimation strategies. Hahn et al.

(2001) suggested the following local estimator. Let Si ≡ 1{z0 − h < Zi < z0 + h}
where h > 0 denotes the bandwidth, and consider the subsample such that

Si = 1. The proposed estimator is the IV regression of Yi on Di using Wi ≡
1{z0 < Zi < z0 + h} as an instrument, applied to the subsample with Si = 1:

α̂RD =
Ê[Yi|Wi = 1, Si = 1]− Ê[Yi|Wi = 0, Si = 1]

Ê[Di|Wi = 1, Si = 1]− Ê[Di|Wi = 0, Si = 1]
. (21)

In sharp designs, the denominator is equal to 1. This estimator has nevertheless

a poor boundary performance. An alternative is based on Equation (13). In the

case of a sharp design, OLS provides consistent estimates of αRD, but in the fuzzy

design Di is endogenous. In that context, we would typically use 1{Zi ≥ z0} as

an instrument for Di. These regression methods, not local to data points near

the threshold, are implicitly predicated on the assumption of homogeneous treat-

ment effects.

V. Conditioning on Covariates

Even if the RD assumption is satisfied unconditionally, conditioning on covari-

ates may mitigate the heterogeneity in treatment effects, hence contributing to

the relevance of RD estimated parameters, which otherwise are “very local”. Co-

variates may also make the local conditional exogeneity assumption more credible.
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