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I. Identification of causal effects in IV settings

Suppose that (Y1i, Y0i) 6⊥⊥ Di|Xi, but we have an exogenous source of variation

in Di so that (Y1i, Y0i) ⊥⊥ Zi|Xi that satisfies the relevance condition Zi 6⊥⊥ Di|Xi.

In that situation, we can use the variation in Zi to identify αATE under certain

circumstances. Selection on observables can be regarded as a special case in which

Zi = Di. For simplicity, we do most of the analysis below considering a single

binary instrument Zi ∈ {0, 1}, and we abstract from including other covariates.

Here, it is crucial to distinguish the two cases we have been discussing so far:

homogeneous and heterogeneous treatment effects.

A. Homogeneous treatment effects

Recall that in the homogeneous treatment effects world, the treatment effect is

the same for all individuals, Y1i−Y0i = β = αATE = αTT for all individuals. In this

case, the availability of an instrumental variable allows us to identify αATE. This

is the traditional situation in econometric models with endogenous explanatory

variables (IV regression). In particular, let Yi = β0 + βDi + Ui as in previous

chapters. In this context, Di 6⊥⊥ Ui given that Di 6⊥⊥ Y0i. However, we use Zi as an

instrument for Di in a just-identified fashion. Thus, the IV coefficient is given by:

α =
Cov(Zi, Yi)

Cov(Zi, Di)
. (1)

Operating the numerator as in previous chapters we obtain:

Cov(Zi, Yi) = E[YiZi]− E[Yi]E[Zi]

= E[Yi|Zi = 1]P (Zi = 1)

− {E[Yi|Zi = 1]P (Zi = 1) + E[Yi|Zi = 0](1− P (Zi = 1))}P (Zi = 1)

= {E[Yi|Zi = 1]− E[Yi|Zi = 0]}P (Zi = 1)(1− P (Zi = 1)). (2)

Likewise, the denominator is:

Cov(Zi, Di) = {E[Di|Zi = 1]− E[Di|Zi = 0]}P (Zi = 1)(1− P (Zi = 1)). (3)

1



Thus, the IV coefficient is:

α =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
, (4)

which is known as the Wald estimand . This estimand can also be derived by

noting that:

Yi = Y0i + (Y1i − Y0i)Di = Y0i + αDi. (5)

Since Y0i ⊥⊥ Zi, then:

E[Yi|Zi = 1] = E[Y0i] + αE[Di|Zi = 1]

E[Yi|Zi = 0] = E[Y0i] + αE[Di|Zi = 0]

}
⇒ α =

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
. (6)

Identification obviously requires that E[Di|Zi = 1] − E[Di|Zi = 0] 6= 0, which is

the relevance condition. All in all, we are obtaining the effect of Di on Yi through

the effect of Zi because Zi only affects Yi through Di (exclusion restriction).

B. Heterogeneous treatment effects

In the heterogeneous case, the availability of instrumental variables is not suffi-

cient to identify a causal effect (e.g. αATE). An additional assumption that helps

in the identification of causal effects is the following monotonicity condition :

any person that is willing to treat if assigned to the control group is also willing

to treat if assigned to the treatment group. The plausibility of this assumption

depends on the context of the application. Under monotonicity, the IV coefficient

coincides with the average treatment effect for those individuals whose value of

Di would change when changing the value of Zi, which is known as the local

average treatment effect (LATE).

The monotonicity condition is well illustrated implementing the potential out-

come notation also for the treatment variable. Let D0i denote Di when Zi = 0,

and let D1i denote Di when Zi = 1 so that D1i, D0i ⊥⊥ Zi. As we only observe

D`i, for individuals with Zi = `, the combination of treatment and instrument

define four observable groups. However, there are eight potential groups, depend-

ing on the value of the unobserved treatment status D−`, which are listed in the

following table:

Obs. type Z D D0 D1 Latent type

Type 1 0 0 0
0

1

Never-taker

Complier

Type 2 0 1 1
0

1

Defier

Always-taker
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Type 3 1 0
0

1
0

Never-taker

Defier

Type 4 1 1
0

1
1

Complier

Always-taker

For example, assume we are interested in the effect of college attendance (treat-

ment) on wages (outcome). Because individuals with higher ability may be more

likely to go to college and, for any given educational level, more likely to earn

higher wages, independence does not hold neither conditionally nor uncondition-

ally (we do not observe ability). Hence, to be able to identify a causal effect of

college attendance on wages, we need an instrument. We consider proximity to a

college as an exogenous source of variation: it is associated with the cost of educa-

tion, but plausibly uncorrelated with later outcomes. To make it dichotomous, we

distinguish between being far and close from school. A complier is an individual

that lives close to school and attends, but would not attend if she lived far, or one

that does not attend school because she leaves far, but would have attended had

she lived close. An individual that goes to school whether she lives close or far

is an always-taker, and one that does not go to school whether she lives close or

far is a never-taker. Defiers are those individuals that go to school being far, but

would not go had they been close, or those who do not go being close, but would

have gone had they been far. Monotonicity implies that there are no defiers.

To see that the availability of an instrumental variable is not enough to iden-

tify causal effects, consider the second derivation of the treatment effect for the

homogeneous effects descried in Equation (6). Now we have:

E[Yi|Zi = 1] = E[Y0i] + E[(Y1i − Y0i)D1i]

E[Yi|Zi = 0] = E[Y0i] + E[(Y1i − Y0i)D0i],
(7)

which implies:

E[Yi|Zi = 1]−E[Yi|Zi = 0] = E[(Y0i − Y0i)(D1i −D0i)]

= E[Y1i − Y0i|D1i −D0i = 1]P (D1i −D0i = 1) (8)

− E[Y1i − Y0i|D1i −D0i = −1]P (D1i −D0i = −1).

In this expression, E[Yi|Zi = 1]−E[Yi|Zi = 0] could be negative even if the causal

effect is positive for all units, as long as the fraction of defiers, P (D1i−D0i = −1),

is sufficiently large. Assuming monotonicity, we avoid this problem: in this case,

the second term is zero, and we define E[Y1i−Y0i|D1i−D0i = 1] as the local average

treatment effect (LATE), which is as much as we can identify as we discuss below.
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II. Imperfect Compliance and IV

One possibility is to make an even stronger assumption than monotonicity. In

particular, assume an eligibility rule of the form:

P (Di = 1|Zi = 0) = 0. (9)

This rule implies that individuals with Zi = 0 are denied treatment (observable

types 2, 3B, and 4B are ruled out). This situation occurs in the most standard form

of imperfect compliance, discussed in Chapter 2: some individuals are assigned to

treatment, but they endogenously decide whether to take it or not.

Under this eligibility rule:

E[Yi|Zi = 1] = E[Y0i] + E[(Y1i − Y0i)Di|Zi = 1]

= E[Y0i] + E[Y1i − Y0i|Di = 1, Zi = 1]P (Di = 1|Zi = 1)

= E[Y0i] + E[Y1i − Y0i|Di = 1]P (Di = 1|Zi = 1), (10)

where the last equality holds because Di = 1 is a sufficient statistic to indicate

that Zi = 1 since P (Di = 1|Zi = 0) = 0. Likewise:

E[Yi|Zi = 0] = E[Y0i] + E[(Y1i − Y0i)Di|Zi = 0]

= E[Y0i] + E[Y1i − Y0i|Di = 1, Zi = 0]P (Di = 1|Zi = 0)

= E[Y0i]. (11)

Thus, we can identify the average treatment effect on the treated in this case, as:

αTT = E[Y1i − Y0i|Di = 1]

=
E[Yi|Zi = 1]− E[Yi|Zi = 0]

P (Di = 1|Zi = 1)

=
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]
, (12)

which is the Wald estimand, as E[Di|Zi = 0] = 0 by the assumption in (9).

III. Local Average Treatment Effects (LATE)

As discussed above, under monotonicity, Equation (8) reduces to:

E[Yi|Zi = 1]− E[Yi|Zi = 0] = E[Y1i − Y0i|D1i −D0i = 1]P (D1i −D0i = 1). (13)

Also, assuming D1i, D0i ⊥⊥ Zi (implying the proportions of compliers, always-

takers, and never-takers in the subsample with Zi = 1 coincides with the one in
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the subsample with Zi = 0) along with monotonicity, we have:

E[Di|Zi = 1]− E[Di|Zi = 0] = E[D1i −D0i] = P (D1i −D0i = 1). (14)

Thus, the causal effect that we can identify is:

αLATE ≡ E[Y1i − Y0i|D1i −D0i = 1] =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
, (15)

which is given again by the Wald estimand. Imbens and Angrist (1994) called

this parameter a local average treatment effect, because averages treatment ef-

fects on the subsample of compliers. Importantly, different instrumental variables

lead to different parameters, even under instrument validity, which is counter to

standard GMM thinking. This concept changed radically the way we think of

and understand IV. As noted, the identified coefficient is the average treatment

effect for compliers. Thus, when selecting an instrument, on top of thinking about

relevance and orthogonality conditions, the researcher needs to think about the

potential group of compliers selected by the instrument.

The most relevant LATEs are those based on instruments that are policy vari-

ables. For example, in the college attendance example before, the identified LATE

(the effect of schooling for those individuals changing their enrollment based on

distance to college) is very relevant for a subsidy policy, even if it is not a good

measurement of the average return to education in the whole population.

As a final remark, what happens if there are no compliers? In the absence of

defiers, the probability of compliers satisfies P (D1i −D0i = 1) = E[Di|Zi = 1] −
E[Di|Zi = 0], so the lack of compliers implies lack of instrument relevance, and,

hence, underidentification. This is natural, because if the population is formed of

never-takers and always-takers, there is no role to be played by the instrument.

IV. Conditional Estimation with Instrumental Variables

So far we abstracted from the fact that the validity of the instrument may only

be conditional on Xi: it may be that (Y1i, Y0i) 6⊥⊥ Zi, but the following does:

(Y1i, Y0i) ⊥⊥ Zi|Xi (conditional independence)

Zi 6⊥⊥ Di|Xi (conditional relevance) .
(16)

For example, in the analysis of the returns to college, Zi is an indicator of proximity

to college. The problem is that Zi is not randomly assigned but chosen by parents,

and this choice may depend on characteristics that subsequently affect wages. The

validity of Zi may be more credible if we can condition on family background, Xi.

5



In the linear version of the problem we can estimate using a two-stage procedure:

first regress Di on Zi and Xi, so that we get D̂i, and in the second stage we regress

Yi on D̂i and Xi. In general, we now have a conditional LATE given Xi:

γ(Xi) ≡ E[Y1i − Y0i|D1i −D0i = 1, Xi], (17)

and a conditional IV estimator:

β(Xi) ≡
E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]

E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi]
. (18)

To get an aggregate effect, we proceed differently depending on whether the effects

are homogeneous or heterogeneous. In the homogeneous case:

Y1i − Y0i = β(Xi) ∀i. (19)

In the heterogeneous case, it makes sense to consider an average treatment effect

for the overall subpopulation of compliers:

βC ≡
∫
β(Xi)

P (compliers|Xi)

P (compliers)
dF (Xi)

=

∫
{E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]}

1

P (compliers)
dF (Xi), (20)

where:

P (compliers) =

∫
{E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi]} dF (Xi). (21)

Intuitively, in the top row we use the Bayes’ Theorem to rewrite the density of Xi

conditional on being a complier. Replacing (21) into (20) yields:

βC =

∫
{E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi]} dF (Xi)∫
{E[Di|Zi = 1, Xi]− E[Di|Zi = 0, Xi]} dF (Xi)

, (22)

which can be estimated as a ratio of matching estimators (Frölich, 2003).

V. Continuous Instruments: Marginal Treatment Effects (MTE)

When the support of Zi is not binary, there is a multiplicity of causal effects.

Then, the question is which of these causal effects are relevant for evaluating a

given policy. The natural experiments literature has been satisfied with identifying

“causal effects” in a a broad sense, without paying much attention to their rele-

vance. But the reality is that some causal effects are more informative than others.

If Zi is continuous, we can define a different LATE parameter for every pair (z, z′):

αLATE(z, z′) ≡ E[Yi|Zi = z]− E[Yi|Z = z′]

E[Di|Zi = z]− E[Di|Zi = z′]
. (23)
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The multiplicity is even higher when there is more than one instrument. For

a general instrument vector Zi, there are as many potential treatment status

indicators Dzi as possible values z of the instrument. The IV assumptions become:

(Y1i, Y0i, Dzi) ⊥⊥ Zi (independence)

P (Di = 1|Zi = z) ≡ P (z) is a nontrivial function of z (relevance) .
(24)

The monotonicity assumption for general Zi can be expressed as follows. For

any pair of values (z, z′), all units in the population satisfy either:

Dzi ≥ Dz′i or Dzi ≤ Dz′i. (25)

Alternatively, we can use the propensity score P (Zi) ≡ P (Di = 1|Zi) as the

instrument (Heckman and Vytlacil, 2005), which is a completely different role

for the propensity score than in matching. This is analogous to using D̂i as an

instrument for Di in the regression context. Then, the LATE is:

αLATE(P (z), P (z′)) =
E[Yi|P (Zi) = P (z)]− E[Yi|P (Zi) = P (z′)]

P (z)− P (z′)
. (26)

If Zi is binary, this is equivalent to what we had in the first place, but if Zi is

continuous, taking limits as z→ z′, we get a limiting form of LATE, which we

refer to as marginal treatment effect (MTE):

αMTE(P (z)) =
∂ E[Yi|P (Zi) = P (z)]

∂P (z)
. (27)

Intuitively, αLATE(P (z), P (z′)) gives the ATE for individuals who would change

schooling status from changing P (Zi) from P (z) to P (z′). In the presence of co-

variates Xi, Heckman and Vytlacil (2005) suggest to estimate MTE by estimating

the derivative of the conditional mean E[Yi|P (Zi) = P (z), Xi] using kernel-based

local linear regression techniques.

Similarly, αMTE(P (z)) gives the ATE for individuals who would change school-

ing status following a marginal change in P (z) or, in other words, who are in-

different between schooling choices at P (Zi) = P (z). Integrating αMTE(U) over

different ranges of U we can get other ATE measures. For example:

αLATE(P (z), P (z′)) =

∫ P (z)

P (z′)

αMTE(u)du

P (z)− P (z′)
, (28)

and:

αATE =

∫ 1

0

αMTE(u)du, (29)
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which makes it clear that to be able to identify αATE we need identification of

αMTE(u) over the entire (0, 1) range.

Constructing suitably integrated marginal treatment effects, it may be possible

to identify policy relevant treatment effects. If the instrument is an indicator of

a policy change, LATE gives the per capita effect of the policy for those induced

to change by the policy (e.g. policies that change college fees or distance to

school, under the assumption that the policy change affects the probability of

participation but not the gain itself).

VI. Some Remarks about Unobserved Heterogeneity in IV Settings

Applied researchers are often concerned about the implications of unobserved

heterogeneity. The balance between observed and unobserved heterogeneity de-

pends on how detailed information on agents is available, which ultimately is an

empirical issue. The worry for IV-based identification of treatment effects is not

heterogeneity per se, but the fact that heterogeneous gains may affect program

participation. In the absence of an economic model or a clear notional experiment,

it is often difficult to interpret IV estimates. Knowing that IV estimates can be

interpreted as averages of heterogeneous effects is not very useful if understanding

the heterogeneity itself is first order. This is clearly a drawback of the approach.

Heterogeneity of treatments may be also quite important. For example, the

literature has found significant differences in returns to different college majors. A

problem of aggregating educational categories is that returns are less meaningful.

Sometimes education outcomes are aggregated into just two categories, because

some techniques are only well developed for binary explanatory variables. A

methodological emphasis may offer new opportunities but also impose constraints.

VII. Weak Instruments

Let Zi be a random variable that satisfies relevance and orthogonality conditions

with respect to Y1i, Y0i and Di in theory, and thus is a candidate for instrument.

Assume, however, that the empirical association between Zi and Di is weak. While

theoretically (and asymptotically) this instrument would eliminate the bias gener-

ated by the endogenous assignment of treatment, one should use it with caution,

as the weak link between Di and Zi introduces a number of complications. In

particular, it produces estimates with low precision and it may introduce sample

biases in the estimation.

The first problem is apparent in the case in which there is only one regressor

Di and only one instrument Zi, and errors are homoskedastic (e.g. homogeneous
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treatment effects). With simple algebra we obtain:

Var(β̂OLS) =
1

N

Var(Ui)

Var(Di)
≤ 1

N

Var(Ui)

Var(Di)

1

ρ2DiZi

= Var(β̂IV ), (30)

where ρDiZi
≡ Cov(Di, Zi)/

√
Var(Di) Var(Zi) is the correlation coefficient be-

tween Di and Zi. This expression indicates that the lower the correlation between

Zi and Di, the higher is the variance of β̂IV (the lower the precision).

Discussing the second problem requires the sampling distributions of β̂OLS and β̂IV ,

whose derivation is out of the scope of the course. Consider the following model:

Yi = βDi + Ui
Di = πZi + Vi.

(31)

The IV coefficient is:

β̂IV =

∑N
i=1 ZiYi∑N
i=1 ZiDi

=

∑N
i=1 Zi(βπZi + βVi + Ui)∑N

i=1 Zi(πZi + Vi)
= β +

∑N
i=1 ZiUi∑N

i=1 πZ
2
i +

∑N
i=1 ZiVi

,

(32)

and the OLS counterpart is:

β̂OLS =

∑N
i=1DiYi∑N
i=1D

2
i

= β +

∑N
i=1(πZi + Vi)Ui∑N
i=1(πZi + Vi)2

. (33)

The case in which π→ 0 is illustrative. In that case:

(β̂OLS − β)→
∑N

i=1 ViUi∑N
i=1 V

2
i

≡ σ̂UV
σ̂2
V

, (34)

and:

(β̂IV − β)→
∑N

i=1 ZiUi∑N
i=1 ZiVi

. (35)

Noting that, without loss of generality, we can define εi ⊥⊥ Vi such that:

Ui = E[Ui|Vi] + εi =
σUV
σ2
V

Vi + εi, (36)

and that both Ui and Vi are zero-mean, Equation (37) can be written as:

(β̂IV − β)→

∑N
i=1 Zi

(
σUV

σ2
V
Vi + εi

)
∑N

i=1 ZiVi
=
σUV
σ2
V

+

∑N
i=1 Ziεi∑N
i=1 ZiVi

. (37)

Assuming the expectation exists:

E[β̂IV − β]→ σUV
σ2
V

+ E

[∑N
i=1 Ziεi∑N
i=1 ZiVi

]
=
σUV
σ2
V

+ E

[∑N
i=1 Zi E[εi|Zi, Vi]∑N

i=1 ZiVi

]
=
σUV
σ2
V

.

(38)
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Thus, when the instrument is weak, there is an IV sample bias that tends to

the OLS bias as the instrument tends to irrelevant. With more tedious algebra

(available in the book) we obtain, for π 6= 0, the following expression:

E[β̂IV − β] ≈ σUV
σV

1

E[F ]
, (39)

where E[F ] ≡ E[π′Z′Zπ]/K
σ2
V

+ 1, which is the expectation of the F -statistic for the

test of the hypothesis that the coefficients on the instruments in the first-stage

regression are equal to zero (excluding the coefficients of the covariates Xi if they

are included in the regression). As the F -statistic is positive by construction,

the weak instruments bias is in the same direction as the OLS bias. Also, the

bias is smaller than OLS is E[F ] > 1. In practice, many researchers use the rule

of thumb F > 10 to talk about strong instruments, but, in reality, the level of

concern about weak instruments depends on numerous factors like the size of the

OLS bias to begin with, the number of excluded instruments used in estimation,

or the number of observations.
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