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I. Selection Based on Observables and (Exact) Matching

There are many situations where experiments are too expensive, unfeasible,

or unethical. A classical example is the analysis of the effects of smoking on

mortality. Also, in experimental settings, often randomization is implemented

conditional on observable characteristics. In any of these situations, we rely on

observational data, which is unlikely to satisfy independence. In some situations,

however, we can arguably defend the assumption of conditional independence,

which is also referred to as selection based on observables:

Y1i, Y0i ⊥⊥ Di|Xi. (1)

When there is selection based on observables, the simple comparison of treat-

ment and control averages does not deliver our treatment effects of interest, as

the selection bias is not equal to zero. The problem is that the controls are not

a counterfactual of treated in the absence of treatment, because the two groups

differ in characteristics that are correlated with the outcome. As we discussed in

Chapter 1, the average treatment effect is given by:

αATE =

∫
(E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi])dF (Xi), (2)

and the average treatment effect on the treated is:

αTT =

∫
(E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi])dF (Xi|Di = 1). (3)

What the above expressions do is to compare average outcomes for individuals

with the same characteristics, and then integrate over the distribution of charac-

teristics. In other words, for each treated (or control) unit, it imputes a coun-

terfactual potential outcome when untreated (treated) obtained from individuals

in the control (treatment) group that share the same characteristics. This im-

putation is called (exact) matching, as it links each group of individuals in the

treatment group with their counterparts in the control group (the “exact” quali-

fier is associated to the exercise of matching observations for every single value of

Xi —below we review some alternatives that are more feasible when samples are
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not very large or the number of different combinations of covariate values is large

or infinite). Following the discussion in Chapter 1, the reason why Equations (??)

and (??) are unbiased representations of αATE and αTT is that, since the selection

is based on observables, for a given Xi the assignment to treatment and control

groups is random, and E[Yi|Di = 1, Xi] = E[Y1i|Di = 1, Xi] = E[Y1i|Xi] and

analogously E[Yi|Di = 0, Xi] = E[Y0i|Di = 0, Xi] = E[Y0i|Di = 1, Xi] = E[Y0i|Xi].

II. The Common Support Condition

An essential condition for matching is that there is some observation to match.

In other words, for each possible value of Xi, there should be individuals in the

treatment and control group for which we can average outcomes. This requirement

is called the common support condition. Formally, this condition is stated as:

0 < P (Di = 1|Xi) < 1 for all Xi in its support. (4)

For example, assume that Xi is a single covariate. Denote the support of Xi by

(Xmin, Xmax). Assume that the support for the subpopulation of treated subjects

is (Xmin, X), and the support for the controls is (X,Xmax), with X > X. Then:

P (Di = 1|Xi) =


1 if Xmin ≤ X < X

p ∈ (0, 1) if X ≤ X ≤ X

0 if X < X ≤ Xmax

. (5)

Given these assumptions, E[Yi|Di = 1, Xi] is only identified for values of Xi in

the range (Xmin, X), and E[Yi|Di = 0, Xi] is only identified for values of Xi

in the range (X,Xmax). Thus, we can only compute the difference E[Yi|Di =

1, Xi]− E[Yi|Di = 0, Xi] for values of Xi in the intersection range (X,X), which

implies that αATE and αTT are not identified.

III. Propensity Score Matching

Sometimes, the set of variables on which we need to do the matching is too large

or multivariate. However, not all information included in Xi is relevant to obtain

independence. Rosenbaum and Rubin (1983) introduced the propensity score

matching, which is a method for reducing dimensionality based in the informa-

tion that is relevant for independence. They define the propensity score, π(Xi), as:

π(Xi) ≡ P (Di = 1|Xi). (6)
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Then, they note that π(Xi) is a sufficient statistic for the distribution of Di by

construction, as:

P (Di = 1|Y1i, Y0i, π(Xi)) = E[Di|Y1i, Y0i, π(Xi)]

= E[E[Di|Y1i, Y0i, Xi]|Y1i, Y0i, π(Xi)]

= E[E[Di|Xi]|Y1i, Y0i, π(Xi)]

= E[P (Di = 1|Xi)|Y1i, Y0i, π(Xi)]

= E[π(Xi)|Y1i, Y0i, π(Xi)]

= π(Xi), (7)

where the third equality is obtained by using the conditional independence as-

sumption. As a result, conditional independence given Xi is equivalent to condi-

tional independence given the propensity score π(Xi):

Y1i, Y0i ⊥⊥ Di|Xi ⇔ Y1i, Y0i ⊥⊥ Di|π(Xi). (8)

Thus, instead of matching exactly (based on the different values of Xi), we can

match all observations with the same propensity score, whether or not they share

the same covariates Xi. That is the propensity score matching.

Intuitively, we can bunch all Xi that share the same propensity score together

because then treated and control groups are not going to overrepresented in any

of these characteristics. For example, consider the analysis of a training program

offered to disadvantaged unemployed workers. Let Xi be a vector of race and

gender. Let the propensity scores and distribution of characteristics be given by:

Propensity Probability

score mass function

black white black white

male 0.3 0.1 0.1 0.4

female 0.8 0.3 0.1 0.4

In this example, black male and white female have the same probability of receiv-

ing treatment. The fraction of treated black male in the population is 0.3× 0.1 =

0.03 and the one of treated white female is 0.3 × 0.4 = 0.12. For controls, these

fractions are 0.07 and 0.28. Thus, if we restrict the sample to black male and

white female, we observe that 0.03/(0.03 + 0.12) = 20% of treated individuals in

this subsample are black male, and 80% are white female, and the same in the

control group, 0.07/(0.07 + 0.28) = 20% and 80%. Thus, within this subsample,

there is no selection bias, as the treated and control groups are representative of
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the same subpopulation (this is, also 0.1/(0.1 + 0.4) = 20% of individuals in the

subpopulation are black male, and 80% are white female).

This result suggests two-step procedures to estimate the treatment effects where

first we estimate the propensity score, and then create the appropriate weighting.

To do so, we rewrite αATE in terms of the propensity score. Under (unconditional)

independence:

αATE = β = E[Yi|Di = 1]− E[Yi|Di = 0] =
E[DiYi]

P (Di = 1)
− E[(1−Di)Yi]

P (Di = 0)
, (9)

where the first equality has been discussed in Chapter 1 and last equality is

obtained noting that E[DiYi] = E[Y1i|Di = 1]P (Di = 1) and analogously for

E[(1−Di)Yi]. Thus, under conditional independence we can write:

E[Y1i − Y0i|Xi] = E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi]

=
E[DiYi|Xi]

P (Di = 1|Xi)
− E[(1−Di)Yi|Xi]

P (Di = 0|Xi)

=
E[DiYi|Xi]

π(Xi)
− E[(1−Di)Yi|Xi]

1− π(Xi)

= E
[
DiYi
π(Xi)

− (1−Di)Yi
1− π(Xi)

∣∣∣∣Xi

]
= E

[
Yi

Di − π(Xi)

π(Xi)(1− π(Xi))

∣∣∣∣Xi

]
, (10)

and:

αATE = E [E[Y1i − Y0i|Xi]] = E
[
Yi

Di − π(Xi)

π(Xi)[1− π(Xi)]

]
. (11)

This expression constitute an estimand to make inference on by one of the esti-

mation methods described below.

To gain intuition on this expression, note that observations with Di = 1 have a

contribution of Yi/π(Xi), whereas observations with Di = 0 have a contribution

of −Yi/(1 − π(Xi)). In practice, what we are computing is a weighted average

difference between observations in the treated group and in the control group. In

our example before, we relatively underweight observations of black female in the

treated group (their weight is 1/0.8 = 1.25) because they are overrepresented (the

overall fraction of treated is 0.1×0.4+0.3× (0.1+0.4)+0.8×0.1 = 0.27, and the

fraction of them that are black female is (0.8 × 0.1)/0.27 = 29.6%, much larger

than the 10% they represent overall), whereas white male are overweighted in this

group (their weight is 1/0.1 = 10), as they are underrepresented ((0.1×0.4)/0.27 =

14.8% < 40%). The reverse is true for the control group.

4



IV. Estimation methods

The first and simplest method for matching estimation only works if Xi is dis-

crete and relatively low-dimensional. Suppose Xi is indeed discrete and takes on J

possible values {xj}Jj=1, and we have a sample of N observations {Xi}Ni=1. Let N j

be the number of observations in cell j, N j
` be the number of observations in cell j

with Di = `, and Ȳ j
` be the mean outcome in cell j for Di = `. With this notation,

Ȳ j
1 −Ȳ

j
0 is the sample counterpart of E[Yi|Di = 1, Xi = xj]−E[Yi|Di = 0, Xi = xj],

which can be used to obtain the following estimates:

α̂ATE =
J∑
j=1

(
Ȳ j
1 − Ȳ

j
0

) N j

N
(12)

α̂TT =
J∑
j=1

(
Ȳ j
1 − Ȳ

j
0

) N j
1

N1

. (13)

Note that the formula for α̂TT can also be written in the form:

α̂TT =
1

N1

∑
i:Di=1

(
Yi − Ȳ j(i)

0

)
, (14)

where j(i) indicates the cell of Xi. Thus, α̂TT matches the outcome of each treated

unit with the mean of untreated units in the same cell. In practice, this is a way of

imputing the missing potential outcome for the treated individuals, and compute

the average treatment effect for them. Note that this expression is the sample

analog of Equation (??). We can proceed analogously with the propensity score

π(Xi) instead of the regressors Xi.

Alternatively, a straightforward way to perform propensity score matching es-

timation was proposed by Hirano, Imbens, and Ridder (2003). This method

essentially estimates a sample analog of Equation (??), which we implement in

two stages. In a first stage, we estimate π̂(Xi) either non-parametrically or by

means of a flexible parametric model like a Logit or Probit with polynomials,

interactions, and the alike. In a second stage, we estimate the following quantity:

α̂ATE =
1

N

N∑
i=1

Yi

(
Di − π̂(Xi)

π̂(Xi)[1− π̂(Xi)]

)
. (15)

More generally, a matching estimator can be regarded as a way of constructing

imputations for missing potential outcomes in a similar way, so that gains Y1i−Y0i

5



can be estimated for each unit. For example, in Equation (??), the imputation is:

Ŷ0i = Ȳ
j(i)
0 ≡

∑
k:Dk=0

Yk
1{Xk = Xi}∑

`:D`=0 1{X` = Xi}
. (16)

More generally we compute:

Ŷ0i =
∑

k:Dk=0

w(i, k)Yk, (17)

where different weighting schemes w(i, k) determine different estimators.

The nearest neighbor matching uses the following weighting function:

w(i, k) = 1{Xk = min
i
||Xk −Xi||}, (18)

which, in words, means picking the individual k in the control group with the

closest observables to the individual i in the treated group. Alternatively, the

radius matching uses:

w(i, k) =
1{||Xk −Xi|| < ε}∑

`:D`=0 1{||X` −Xi|| < ε}
, (19)

for some threshold ε. In words, this procedure averages the observations from the

control group with covariates within a window centered at Xi. And finally, the

kernel matching uses:

w(i, k) =
κ
(
Xk−Xi

γN0

)
∑

`:D`=0 κ
(
X`−Xi

γN0

) , (20)

where κ(·) is a kernel function that downweights distant observations, and γN0

is a bandwidth parameter. These procedures are generally implemented with

replacement, meaning that each individual in the control group can be selected

as a counterfactual for more than one individual in the treated group. Also they

are typically applied to compute αTT , but they are also applicable to αATE. And,

furthermore, they can also be implemented on the propensity score π(Xi) rather

than the covariates Xi.

V. Matching versus Regression

Matching can be seen as an alternative to linear regression. Given the condi-

tional independence assumption, the regression:

Yi = β0 + βRDi + βXXi + Ui, with E[Ui|Xi, Di] = 0, (21)
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would provide, by assumption, a consistent estimate of βR (here we introduce Xi

linearly without loss of generality, as we could redefine our vector of regressors

to fully saturate the model with a set of dummies for each of the possible values

of Xi). To prove it, let D̃i denote the regression residual of Di on Xi, defined as

D̃i ≡ Di − E[Di|Xi]. Likewise, let Ỹi denote the corresponding residual for the

observed outcome, defined as Ỹi ≡ Yi − E[Yi|Xi]. Then:

βR =
Cov(Ỹi, D̃i)

Var(D̃i)
. (22)

As in Chapter 1, we operate this expression in pieces. First, we note that

E[Di|Xi] = π(Xi) by definition. Then, we operate the denominator:

Var(D̃i) = E[(Di − π(Xi))
2]− E[Di − π(Xi)]

2

= E[(Di − π(Xi))
2]

= E[Di − 2π(Xi)Di + π(Xi)
2]

= E[E[Di|Xi]− 2π(Xi)E[Di|Xi] + π(Xi)
2]

= E[π(Xi)− π(Xi)
2]

= E[π(Xi)(1− π(Xi))], (23)

where the second equality uses that E[Di − π(Xi)] = E[E[Di|Xi] − π(Xi)] = 0,

the third equality uses D2
i = Di, and the fourth equality uses the law of iterated

expectations in a similar way. And finally, we operate the numerator:

Cov(Ỹi, D̃i) = E[{Di − π(Xi)}{Yi − E[Yi|Xi]}]− E[Di − π(Xi)]E[Yi − E[Yi|Xi])]

= E[{Di − π(Xi)}{Yi − E[Yi|Xi]}]

= E[{Di − π(Xi)}Yi]

= E[{Di − π(Xi)}E[Yi|Di, Xi]], (24)

where, as before, the second equality uses E[Di − π(Xi)] = E[Yi − E[Yi|Di])] = 0,

the third one uses the law of iterated expectations to get E[{Di−π(Xi)}E[Yi|Xi]] =

E[{π(Xi) − π(Xi)}E[Yi|Xi]] = 0, and the last one uses again the law of iterated

expectation. To simplify further, note that:

E[Yi|Di, X] = E[Yi|Di = 0, X] + δXDi, (25)
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where δX ≡ E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi]. Thus:

E[{Di − π(Xi)}E[Yi|Di, Xi]] = E[{Di − π(Xi)}E[Yi|Di = 0, Xi]]

+ E[{Di − π(Xi)}DiδX ]

= E[{Di − π(Xi)}DiδX ]

= E[{Di − π(Xi)Di}δX ]

= E[π(Xi)(1− π(Xi))δX ], (26)

where the second equality is obtained by noting that E[Yi|Di = 0, Xi] only depends

on Xi and, thus, it is once again orthogonal to (Di−π(Xi)), and the last equality

makes use of the law of iterated expectations. Thus:

βR = E
[
π(Xi)(1− π(Xi))

E[π(Xi)(1− π(Xi))]
δX

]
6= αATE = E[δX ]. (27)

Thus, βR provides a consistent average treatment effect, as weights sum to one,

but this average is weighted. Noting that π(Xi)(1− π(Xi)) is the variance of Di

given Xi, βR provides a conditional variance-weighted average treatment effect.

Thus, regression and matching provide, in general, different estimands, even if

both are consistent estimates of the average treatment effect, and it is natural to

compare the two.

The main advantages of matching are that it avoids functional form assumptions

and it emphasizes the common support condition. Matching focuses on a single

parameter at a time, which is obtained through explicit aggregation. On the

downside, matching works under the presumption that for Xi there is random

variation in Di, so that we can observe both Y0i and Y1i. Hence, it fails if Di is a

deterministic function of Xi, that is, if π(Xi) is either 0 or 1. Additionally, there

is a tension between the thought that if Xi is good enough then there may not be

within-cell variation in Di, and the suspicion that seeing enough variation in Di

given Xi is an indication that exogeneity is at fault.

VI. Inference: Bootstrap Standard Errors

In the context on matching, it is not straightforward how to compute standard

errors. There are no general asymptotic formulas to apply here, and the general

practice is to use some bootstrap procedure to obtain standard errors and make

inference. Thus, in the remaining of this section, we introduce the main intuition

about bootstrap and the computation of bootstrapped standard errors.

First, recall that the reason why we compute standard errors is because an

estimator, as a combination of random variables, is itself a random variable. Thus,
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it has a distribution. What this means in practice is that if we were able to go

back to the population and draw a different sample with the same procedure we

would obtain a different estimate. If we could repeat this process infinite times,

and we draw a histogram with the estimates we obtain each time we would obtain

the distribution of our estimator.

Bootstrap standard errors (and other bootstrapped statistics) are computed fol-

lowing this notion closely. Unfortunately, it is costly (and in general, not possible)

to go back to the population and obtain other samples. Thus, we re-sample (with

replacement) from within our sample. To gain intuition about it, consider two dis-

crete random variables (Yi, Di). Assume in our sample, the proportions of (0, 0),

(0, 1), (1, 0), and (1, 1) observations is 25% each. If our sample is large enough,

this probably means that the proportions in the population are close to 25% each.

Thus, if we draw J samples of N observations with replacement (without replace-

ment we would always trivially obtain the same sample!), the probability that

each of the pairs is drawn is 25%, but some samples will have, say, more observa-

tions with (0, 0) observations and others more with (1, 1) observations. Thus, this

resampling procedure would provide us with J different samples obtained from

the same population.

Following this argument, this is how bootstrap works in practice in our context.

First, we obtain J different samples of (Yi, Di, Xi) obtained from redrawing from

our sample. Then, for each of this sample we apply the whole matching procedure,

as we did to obtain our point estimates. With each sample we obtain an estimate,

which we store. Finally, the bootstrap standard error is obtained as the standard

deviation of our J stored matching estimates.
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