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I. Randomized Control Trials and Natural Experiments

In the treatment effect approach, a randomized field trial is regarded as the

ideal research design. Observational studies are seen as more speculative attempts

to generate the force of evidence of experiments.

There is a long history of randomized field trials in social welfare in the U.S.,

beginning in the 1960s (see Moffitt, 2003, for a review). Early experiments had

many flaws due to the lack of experience in designing them, and in data analysis.

During the 1980s, the U.S. Federal Government started to encourage states to

use experimentation, eventually becoming almost mandatory. The analysis of the

1980s experimental data consisted of simple treatment-control differences. The

force of the results had a major influence on the 1988 legislation. In spite of these

developments, randomization encountered resistance from many U.S. states on

ethical grounds. Even more so in other countries, where treatment groups have

often been formed by selecting areas for treatment instead of individuals.

Experiments are often very expensive, and often difficult to implement. How-

ever, nature sometimes do the job, providing natural experiments . Very illus-

trative to this end is the way in which science connected cholera and the quality of

drinking water in the SoHo in London, in 1854. In the 19th century, London suf-

fered from periodic cholera epidemics in which many died. Cholera was believed

to be caused by bad air quality, but John Snow (a medical doctor) suspected that

instead it was caused by bad water quality (though he had no theory of why). In

order to use experimental data to test this hypothesis, one could randomly give

some people good water and some people bad water. However, there are good

ethical reasons why this experiment cannot be implemented on people.

In 1854 there was a severe outbreak of cholera in Soho. Snow thought contam-

ination of the pump in Broad Street was the source of the problem. He found

those for whom this was the closest pump were more likely to die, but in nearby

workhouse fewer people died (they had their own well). The brewery on Broad

Street itself reported no deaths (they also had their own well —though the men

normally only drank beer). These two groups breathed the same air but had ac-
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cess to different water. A further piece of evidence was two isolated deaths, one

in Hampstead, one in Islington, of an aunt and her niece. The aunt was in the

habit of having a barrel of water delivered from the Broad Street pump every day

(she liked the taste) and the niece had paid her a visit. Thus, even though this

variation in who drank what water was not assigned at random by any researcher,

he built a powerful case that “bad water” was the source of problem. This acci-

dental variation in the source of water can be considered “as good as randomly

assigned”, because of different water sources across houses in the same street and

sometimes even across apartments within houses. Some houses got their drinking

water supply from companies such as Lambeth that sourced upstream, i.e. above

sewage discharge points, while other houses were supplied by companies such as

Southwark and Vauxhall that sourced downstream, i.e. from dirtier water. Snow

identified the water companies for the houses with cholera deaths as well as the

total number of houses served by each company in his study area. And results

corroborated his suspicion.

II. Random Assignment and Treatment Effects

In a controlled experiment, treatment status is randomly assigned by the re-

searcher, which by construction, ensures independence:

Y1i, Y0i ⊥⊥ Di. (1)

As noted in Chapter 1, this eliminates the selection bias (and implies αTT = β), as:

E[Y0i|Di = 1] = E[Y0i|Di = 0] = E[Y0i]. (2)

It also implies αATE = αTT = β, as E[Y1i − Y0i|Di = 1] = E[Y1i − Y0i]. Thus,

the average treatment effect can be estimated by a simple linear regression of the

observed outcome Yi on the treatment dummy Di and a constant.

III. Standard Errors and Inference

When implementing this estimation as a linear regression with a standard sta-

tistical package (say, Stata or R) the default options provide an estimate of the

standard error of the slope coefficient β, which gives, in this context, an estimate

of the standard error of the estimated average treatment effect. The standard

default options usually assume that residuals Ui are homoskedastic. This implies:

Var(Yi|Di = 1) = Var(Yi|Di = 0) = Var(Ui) = Var(Y0i). (3)
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This assumption is often violated in the context of heterogeneous treatment effects.

Noting that Var(Yi|Di = 1) = Var(Y1i|Di = 1) by definition, and that, in this

context, given independence, Var(Y1i|Di = 1) = Var(Y1i), Equation (3) implies

Var(Y1i) = Var(Y0i). However, Var(Y1i) can be expressed as:

Var(Y1i) = Var(Y0i) + Var(Y1i − Y0i) + 2 Cov(Y1i − Y0i, Y0i), (4)

which is obtained by noting that Var(Y1i) = Var(Y0i + (Y1i− Y0i)). In the context

of homogeneous treatment effects, Y1i − Y0i is a constant, and, thus, the second

and third terms of the right hand side are equal to zero. But, in general, this is

not the case with heterogeneous treatment effects.

For example, consider the case in which treatment effects are heterogeneous

(and hence Var(Y1i − Y0i) > 0), but uncorrelated (or positively correlated) with

the initial outcome. For example, consider the effect of buying a lottery ticket

on wealth. To analyze that, the researcher randomly provides lottery tickets to

subjects independently of their wealth. Among treated individuals, with proba-

bility p their wealth is increased by an amount M , and with probability 1−p, the

wealth increases by 0. In this context:

Var(Y1i − Y0i) = M2 · p+ 0 · (1− p) = pM2 > 0, (5)

and Cov(Y1i − Y0i, Y0i) = 0 as both the prize M and the probability of winning p

are independent of the initial wealth Y0i. In this case, Var(Y1i) > Var(Y0i), and

the homoskedasticity assumption is violated.

This violation does not affect the bias and consistency of the OLS estimator.

But it implies that the default standard errors may be inconsistent. Thus, it is

useful to provide alternatives to the estimation of standard errors. If observations

in the sample are independent from each other, a natural way to compute the

standard error of the average treatment effect is by focusing on the difference in

means rather than in the regression estimation, and noting that:

Var(βS) = Var(ȲT − ȲC) = Var(ȲT ) + Var(ȲC) =
σ2
T

N1

+
σ2
C

N0

, (6)

where σ2
T and σ2

C are respectively the variances of the outcome computed on

treated and control subsamples, and N1 and N0 are the sizes of each subsample,

as defined in Chapter 1. The second equality makes use of the independence

across observations. A sample analog could be computed with sample variances

or corrected sample variances.

An alternative way to obtain standard errors when observations are independent

follows the regression approach and computes robust standard errors. Recall
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from QSM I that the asymptotic formula for the variance of the estimators under

heteroskedasticity is given by the following sandwich formula:

Var
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β̂0
β̂

)
=

1

N
E[XiX

′
i]
−1 E[XiX

′
iU

2
i ]E[XiX

′
i]
−1, (7)

where Xi ≡ (1, Di)
′. The sample analog of the above expression is:
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This expression is general for any vector of regressors Xi, but in this context it

simplifies further. To check that, we need to operate the different matrices and

sums. The derivation below uses the fact that D2
i = Di, as discussed in Chapter 1:
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2
i∑

i:Di=1 Û
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where the fourth row uses the identity N = N0 + N1 and fifth and sixth use∑N
i=1 Û

2
i =

∑
i:Di=0 Û

2
i +

∑
i:Di=1 Û

2
i . Thus, the estimated variance of the average

treatment effect (bottom right quantity) is of the form of sum of sample vari-

ances of treated and control errors divided by the corresponding sample sizes, as

Ûi = Yi − ȲC for control observations and Ui = Yi − ȲT for treated ones. In other

words, the regression robust standard error provides an estimate that is numeri-

cally equivalent to the variance of the average treatment effect computed directly.

In all this derivation, we assumed that observations are independent. However,

the experimental design and data collection sometimes generates correlation be-

tween a subset of observations. For example, in the Progresa conditional cash
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transfers introduced in Mexico to foster children’s education, randomization was

done at the village level, and, within a village, all individuals were treated or

controls. This implies that some observations experience common village-level

shocks, and, thus, are correlated. A solution to this is clustering standard er-

rors (at the village level in this case). We will expand on this aspect further if

time permits at the end of the course.

IV. Introduction of Additional Regressors

The discussion above shows that econometrics would be very easy if all data was

from (well executed) randomized control experiments: one could get causal effects

simply by comparing means, there would be no need for matrix algebra or even

multiple regressions, and no need to collect any variables other than treatment

status and the outcome variable.

However, even in this setup, there are situations in which additional regression

can be useful. Let Wi denote a vector of additional possible regressors. Random-

ization ensures consistency, even if they are not included. The omitted variable

bias formula obtained in Equation (29) in Chapter 1 is:

γ
Cov(Wi, Di)

Var(Di)
, (10)

which is equal to zero because randomization implies Cov(Wi, Di) = 0. This is so

unless Wi is a “bad control”, that is, an intermediate outcome that is affected by

the treatment (as occupational choice in Chapter 1). We revisit this point below.

One advantage of including additional controls is that, if they are relevant,

this would typically increase precision in the estimated average treatment effect.

Intuitively this is so because by holding constant other characteristics that affect

the outcomes, we are reducing the variance of Ui. More formally, one can apply

the partial regression results by Frisch and Waugh to show it. The Frisch-Waugh

Theorem (whose proof is quite straightforward but out of the scope of the course,

so you can easily check in any textbook or even online) establishes that if we are

interested in β1 in the following regression:

Yi = β1X1i + β2X2i + Ui, (11)

we can apply two different procedures that provide exactly (numerically) the same

result. The first one is OLS on the whole regression. The second is to regress X1i

and Yi on X2i, obtain the residuals of the two regressions, namely Vi and Ei
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respectively, and then estimate the following regression:

Ei = β1Vi + Ui. (12)

Using this result, and noting that, since the regression of Wi on the treatment vari-

able Di provides a zero coefficient given independence (through randomization),

the resulting regression would be:

Ei = Yi − γYWi = β̃0 + βDi + Ũi, (13)

where γY is the regression coefficient of Yi on Wi, and β̃0 ≡ E[Y0i − γYWi]. Since

Var(Ei) ≤ Var(Yi), then Var(Ũi) ≤ Var(Ui).

A different role for additional regressors in randomized experiments is related

to checking for randomization. In many real world examples of randomized ex-

periments, there are serious questions about how well the randomization was

implemented in practice. In such situation, adding some controls can provide

additional credibility to the results. A previous step to that in practice is to

check whether the possible additional controls have different averages in treated

and control groups. A fast way of doing it is to compute the treatment effect on

these variables and test whether we can reject that it equals zero. If it appears

that treatment and control samples differ in a particular dimension, including this

variable as a control could eliminate the resulting omitted variable bias.

Similarly, sometimes randomization is implemented conditional on observables.

Regressors can be useful at the design stage. For example, in the Progresa case,

randomization is at the village level. This ensures that control units are not

“contaminated” by treatment of treated units. In these cases, we need to further

control for the variables used in the randomization design. This and the previous

cases lead to the conditional independence situation, discussed in the next chapter.

V. Warnings: Partial or Imperfect Compliance and Longer Run
Interaction of Treatment and Intermediate Outcomes

A. Partial or Imperfect Compliance and Intention-to-Treat Analysis

So far, we have assumed that those in the treatment group all get the treatment

and those in the control group do not. There are a number of reasons why things

are often not as clean as this in practice. Those in the treatment group often

cannot be forced to take the de-worming drugs or attend their training program

or to take the offered savings package. Similarly, some in the control group may

manage to get treatment because they complain or because close substitutes to
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the treatment are available outside the experiment. In the presence of imperfect

compliance, the probability of receiving treatment among the treatment group is

less than one and/or it is more than zero for the control group.

For example, Kling, Liebman, and Katz (2007) provide an evaluation of the

Moving To Opportunity (MTO) program in five US cities. This program gave

some residents of public housing projects in disadvantaged neighborhoods the

opportunity to move out of their public housing. The control group got no new

assistance but there were two treatment groups. The S-group received a housing

voucher they could use in private rental housing and the E-group the same but

with use restricted to areas with poverty rates below 10%. The program is an

opportunity to do something, nobody is forced to use the voucher. In fact, only

60% of the S-group and 47% of the E-group did.

The economic interest in this program is the following. It is well-known that

cities tend to have residential sorting in which people with similar socioeconomic

backgrounds live together. If there are externalities between neighbors then eco-

nomic theory suggests this sorting may be inefficient. For example, are kids af-

fected by growing up in a bad neighborhood or is their future affected solely by

their household characteristics (which tend to be bad in a bad neighborhood)?

With non-experimental evidence it has proved very hard to get credible evidence

on this issue, but the experimental nature of the MTO program offers a chance

to improve our knowledge on this important question.

Let Di denote actual receipt of the treatment (using the voucher) and let Zi

denote being assigned to the treatment (receiving the voucher). So far we assumed

that Zi = 1 implied Di = 1, and Zi = 0 implied Di = 0, but now we depart from

this assumption. Individuals with Zi = 1 but Di are sometimes referred to as

no-shows , because they did not show up to get the treatment, and individuals

with Zi = 0 but Di = 1 are referred to as cross-overs .

The main concern here is that we are no-longer in a situation of independent

treatment, as compliance can be endogenous to potential outcomes. Thus, in

general:

Y1i, Y0i 6⊥⊥ Di, (14)

but, in this case:

Y1i, Y0i ⊥⊥ Zi. (15)

The notation is not casual, as Zi can be used as an instrumental variable, as

discussed in Chapter 4. Alternatively, we can use Zi as the treatment variable,
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instead of Di:

αITT ≡ E[Yi|Zi = 1]− E[Yi|Zi = 0] (16)

This parameter is known as intention-to-treat effect.

B. Longer Run Interaction of Treatment and Intermediate Outcomes

Ham and LaLonde (1996) analyze the National Supported Work program (NSW).

The NSW was a training program designed in the U.S. in the mid 1970s to pro-

vide training and job opportunities to disadvantaged workers, as part of an ex-

perimental demonstration. Ham and LaLonde look at the effects of the NSW on

women that volunteered for training. NSW guaranteed to treated participants

12 months of subsidized employment (as trainees) in jobs with gradual increase

in work standards. Eligibility requirements were to be unemployed, a long-term

AFDC recipient, and have no preschool children. Participants were randomly as-

signed to treatment and control groups in 1976-1977. The experiment took place

in 7 cities. Ham and LaLonde analyze data for 275 women in the treatment group

and 266 controls. All volunteered in 1976.

Thanks to randomization, a simple comparison between employment rates of

treatments and controls gives an unbiased estimate of the effect of the program

on employment at different horizons. Figure 1 below, reproduced from Ham and

LaLonde (1996) shows the effects. Initially, by construction there is a mechanical

effect from the fact that treated women are offered a subsidized job. As apparent

from the figure, compliance with the treatment is decreasing over time, as women

can decide to drop from the subsidized job. The employment growth for controls

is just a reflection of the program’s eligibility criteria. Importantly, after the

program ends, a 9 percentage points difference in employment rates is sustained

in the medium run, at least until month 26 after the beginning of the program.

But Ham and LaLonde make an important additional point. Even though

randomization allows researchers to evaluate the impact of the program on a

particular outcome (employment) simply by comparing means, this is not true

for any possible outcomes. In particular, if one is interested in the effect of the

program on wages or on employment and unemployment durations, a comparison

of means would provide a biased estimate of the effect of the program. This is

because, as discussed above, the training program had an effect on employment

rates of the treated.

To illustrate that, let Wi denote wages, let Yi be an indicator variable that takes

the value of one if the individual is employed, and zero if she is unemployed, and
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Figure 1. Employment rates of AFDC women in NSW Demonstration

Note: This figure corresponds to Figure 1 in Ham and LaLonde (1996)

let ηi denote the ability type, with ηi = 1 if the individual is skilled, and ηi = 0

if she is unskilled. Suppose that the treatment increases the employment rates of

high skill and low skill workers, but the effect is of less intensity for the high skilled

(as they were more likely to find a job anyway without the training program):

P (Yi = 1|Di = 1, ηi = 0) > P (Yi = 1|Di = 0, ηi = 0), (17)

P (Yi = 1|Di = 1, ηi = 1) > P (Yi = 1|Di = 0, ηi = 1), (18)

and:

P (Yi = 1|Di = 1, ηi = 0)

P (Yi = 1|Di = 0, ηi = 0)
>
P (Yi = 1|Di = 1, ηi = 1)

P (Yi = 1|Di = 0, ηi = 1)
. (19)

This implies that the frequency of low skill will be greater in the group of employed

treatments than in the employed controls:

P (ηi = 0|Yi = 1, Di = 1) > P (ηi = 0|Yi = 1, Di = 0), (20)

which is a way to say that ηi, which is unobserved, is not independent of Di given

Yi = 1, although, unconditionally, ηi ⊥⊥ Di. For this reason, a direct comparison

of average wages between treatments and controls will tend to underestimate the

effect of treatment on wages. In particular, consider the conditional effects:

∆0 ≡ E[Wi|Yi = 1, Di = 1, ηi = 0]− E[Wi|Yi = 1, Di = 0, ηi = 0], (21)

∆1 ≡ E[Wi|Yi = 1, Di = 1, ηi = 1]− E[Wi|Yi = 1, Di = 0, ηi = 1]. (22)
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Our effect of interest is:

∆ATE = ∆0P (ηi = 0) + ∆1P (ηi = 1), (23)

whereas the comparison of average wages between treatments and controls gives:

∆W = E[Wi|Yi = 1, Di = 1]− E[Wi|Yi = 1, Di = 0]. (24)

In general, we shall have ∆W < ∆ATE. Indeed, it may not be possible to construct

an experiment to measure the effect of training the unemployed on subsequent

wages, i.e. it does not seem possible to experimentally undo the conditional

correlation between Di and ηi.
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