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I. Introduction

According to the definition in The New Palgrave: A Dictionary of Economics,

econometrics is the branch of economics that aims to give empirical content to

economic relations. We use econometrics to this end in three different ways:

- Inference of association (or descriptive statistics): to quantitatively de-

scribe or summarize the co-movement of different economic variables. These

are widely used to establish “facts” that motivate economic theory, but do

not aim to provide, by themselves, inference about the mechanisms beyond

the economic relation between the variables. They have recently regained

popularity with the recent availability of huge datasets (big data).

- Forecasting : to predict one variable based on the movements of other vari-

ables, without any aim, once again, of describing the economic mechanisms

of interest. For example, the presence of many people carrying an umbrella

can help us in predicting that it is likely to rain, but no-one would think

that it is going to rain because many people carry an umbrella.

- Causal inference : the process of drawing a conclusion about a cause-effect

connection between economic variables. For example, we may be interested

in whether hospital stays improve the health of inpatients. The association

between hospital stay and health would clearly be negative, as inpatients are

usually sicker than average. However, is it because hospitals worsen health

of inpatients (e.g. exposition to other illnesses) or simply because unhealthy

individuals go to hospitals? Causal inference aims to answer what if type

of questions. Hence, we want to know whether the same inpatient would

be more or less healthy if she was sent to home versus being kept at the

hospital. Thus, we want to net out the fact that individuals that go to

hospitals are unhealthier to begin with.

In this course we focus on the latter, which is a powerful tool for policy evaluation.

The evaluation of public (and private) policies is very important for efficiency,

and ultimately to improve welfare. There is a vast literature in economics, mostly

in public economics, but also in development economics and labor economics,
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devoted to the evaluation of different programs. Examples include training pro-

grams, welfare programs, wage subsidies, minimum wage laws, taxation, Medicaid

and other health policies, school policies, feeding programs, microcredit, and a va-

riety of other forms of development assistance. These analyses aim at quantifying

the effects of these policies on different outcomes, and ultimately on welfare.

The classic approach to quantitative policy evaluation is the structural ap-

proach. This approach specifies a class of theory-based models of individual

choice, chooses the one within the class that best fits the data, and uses it to

evaluate policies through simulation. This approach has the main advantage that

it allows both ex-ante and ex-post policy evaluation, and that it permits evaluat-

ing different variations of a similar policy without need to change the structure

of the model or reestimate it (out of sample simulation). The main critique to

this approach, though, is that there is a host of untestable functional form as-

sumptions that undermine the force of the structural evidence because they have

unknown implications for the results, give researchers too much discretion, and its

complexity often affects transparency and replicability. Some people has argued

that this approach puts too much emphasis on external validity at the expense of

a more basic internal validity.

During the last two decades, the treatment effect approach has established

itself as an important competitor that has introduced a different language, dif-

ferent priorities, techniques, and practices in applied work. This approach has

changed the perception of evidence-based economics among economists, public

opinion, and policy makers. The main goal of this approach is to evaluate (ex-

post) the impact of an existing policy by comparing the distribution of a chosen

outcome variable for individuals affected by the policy (the treatment group), with

the distribution of unaffected individuals (control group). The main challenge of

this approach is to find a way to perform the comparison in such a way that the

distribution of outcome for the control group serves as a good counterfactual for

the distribution of the outcome for the treated group in the absence of treatment.

The main focus of this approach is in the understanding of the sources of variation

in data with the objective of identifying the policy parameters, even though these

parameters are formally not valid representations of the outcomes of implement-

ing the same policy in an alternative environment, or of implementing variations

of the policy even to the same environment. Thus, this approach helps in the

assessment of future policies in a more informal way.

The main advantage of this approach is that, given its focus on internal validity,

the exercise gives transparent and credible identification. The main disadvantage
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is that estimated parameters are not useful for welfare analysis because they are

not deep parameters (they are reduced-forms instead), and as a result, they are

not policy-invariant. In that respect, a treatment effect exercise is less ambitious.

In order to set up a treatment effects analysis (or essentially any econometric

analysis that aims at making causal inference) we have to formulate essentially

four crucial questions:

- What is the causal relation of interest?

- What experiment could ideally be used to capture the causal effect of in-

terest? Some times this would be trivial. For example, if we are interested

in the causal effect of a subsidy on education, we just have to give the sub-

sidy to some people and keep some otherwise equal individuals without any

subsidy, and the compare the outcomes of both groups. However, if we are

interested in the effect of being black on wages (everything else equal), it

is more difficult to think of an ideal experiment, as we cannot transform

a group of blacks into whites. If our interest is on hiring probabilities or

starting wage, one could send some fake curriculum vitae of black and white

workers with the same characteristics and compare the rate at which calls

are returned. Other cases are even more difficult (so much that we say that

they are fundamentally unidentified). For example, if we are interested in

the effect of age of start of school on test scores, we have the following prob-

lem. On the one hand, if we compare individuals born in different months

(so that they are in different grades but of similar age), we have the problem

that those who started earlier have accumulated more schooling at the time

of the test. If, instead, we take the test at the end of the first (or second)

grade, we have the problem that the ones in the lower grade are more mature

at the time of the test. Thus, it is fundamentally not possible to identify the

effect of early schooling on early test scores (for later outcomes the maturity

differences vanish somehow).

- What is your “identification strategy” (in the terminology of Angrist and

Krueger, 1999)? This is, how do you use observational data to approximate

a real experiment?

- What is your method for inference? Or, in other words, the population

to be studied, the sample to be used, and the assumptions made when

constructing standard errors.
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II. Potential Outcomes, Selection Bias, and Treatment Effects

Consider the population of individuals that are susceptible of a treatment. Let

Y1i denote the outcome for an individual i if exposed to the treatment (Di = 1),

and let Y0i be the outcome for the same individual if not exposed (Di = 0). The

treatment effect for individual i is thus Y1i − Y0i. Note that Y1i and Y0i are

potential outcomes in the sense that we only observe one of the two:

Yi = Y1iDi + Y0i(1−Di). (1)

This poses the main challenge of this approach, as the treatment effect can not

be computed for a given individual. Fortunately, our interest is not in treatment

effects for specific individuals per se, but, instead, in some characteristics of their

distribution, like some average.

We mainly focus on two parameters of interest. The first one is the average

treatment effect (ATE):

αATE ≡ E[Y1i − Y0i], (2)

and the second one is average treatment effect on the treated (TT):

αTT ≡ E[Y1i − Y0i|Di = 1]. (3)

Note the subtle difference between the two. The first one is an ideal parameter of

interest, but difficult to obtain: the average of the treatment effects for the pop-

ulation. The second one, which is often easier to obtain, is the average treatment

effect computed over treated individuals, that is, for the individuals that actually

experiment treatment.

The reason why the second parameter is easier to identify is, precisely, that we

only observe Yi. Let β denote the difference in mean outcomes for treated and

untreated individuals, which can be rewritten as:

β ≡ E[Yi|Di = 1]− E[Yi|Di = 0]

= E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
αTT

+ (E[Y0i|Di = 1]− E[Y0i|Di = 0])︸ ︷︷ ︸
selection bias

. (4)

The second term, which we call “selection bias” indicate the difference in untreated

potential outcomes between treated and untreated individuals. A nonzero bias

may result from a situation in which treatment status is the result of individual

decisions where those with low Y0 choose treatment more frequently than those

with high Y0 or vice versa. In the hospital example, treated individuals (those
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hospitalized) would also be less healthy had they been at home (negative bias).

Thus, the comparison of health between inpatients and other individuals gives a

negatively biased estimate of the effect of hospitalization.

From a structural model of Di and Yi, one could obtain the implied average

treatment effects. Here, they are instead defined with respect to the distribution

of potential outcomes, so that, relative to the structure, they are reduced-form

causal effects. Econometrics has conventionally distinguished between reduced

form effects, uninterpretable but useful for prediction, and structural effects, as-

sociated with rules of behavior. The treatment effects provide this intermediate

category between predictive and structural effects, in the sense that recovered pa-

rameters are causal effects, but, as reduced form effects, they are uninterpretable

outside of the sample/population of interest and the treatment implemented (or,

in other words, they lack external validity). Furthermore, an important assump-

tion of the potential outcome representation is that the effect of the treatment on

one individual is independent of the treatment received by other individuals. This

excludes equilibrium or feedback effects, as well as strategic interactions among

agents. Hence, the framework is not well suited to the evaluation of system-wide

reforms which are intended to have substantial equilibrium effects.

Sample analogs for αATE and αTT are:

αSATE ≡
1

N

N∑
i=1

(Y1i − Y0i) (5)

αSTT ≡
1

N1

N∑
i=1

Di(Y1i − Y0i), (6)

where N1 ≡
∑N

i=1 Di is the number of treated individuals. If factual and coun-

terfactual potential outcomes were observed, these quantities could be estimated

without error. However, since they are not, the distinction is not very useful

on practical grounds. Importantly, though, depending on whether we estimate

population (α) or sample (αS) average treatment effects, standard errors will be

different, so we should take this into account when computing confidence intervals.

The sample average version of β is given by:

βS ≡ ȲT − ȲC

≡ 1

N1

N∑
i=1

YiDi −
1

N0

N∑
i=1

(1−Di)Yi, (7)

where N0 ≡ N −N1 is the number of untreated (or control) individuals.
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III. Identification of Treatment Effects under Different Assumptions

The identification of the treatment effects depends on the assumptions we make

on the relation between potential outcomes and the treatment. The easiest case is

when the distribution of the potential outcomes is independent of the treatment:

(Y1i, Y0i) ⊥⊥ Di. (8)

This situation is typical in randomized experiments, where individuals are assigned

to treatment or control in a random manner. For example, this occurs, for a given

school, in the random assignment of pupils to different class sizes implemented

in a randomized experiment called STAR that we will discuss as an example in

next chapter. When this is the case, F (Y1i|Di = 1) = F (Y1i), and F (Y0i|Di =

0) = F (Y0i), which implies that E[Y1i] = E[Y1i|Di = 1] = E[Yi|Di = 1] and

E[Y0i] = E[Y0i|Di = 0] = E[Yi|Di = 0], and, as a result, αATE = αTT = β. Thus,

an unbiased estimate of αATE is given by the difference between average outcomes

of treated and control individuals:

α̂ATE = ȲT − ȲC = βS. (9)

In this context, there is no need to “control” for other covariates, unless there is

direct interest in their marginal effects, or we want to compute effects for specific

groups (we return to this point below).

A less restrictive assumption is conditional independence :

(Y1i, Y0i) ⊥⊥ Di|Xi, (10)

where Xi is a vector of covariates. This situation is known as matching, as for

each “type” of individual (i.e. each value of covariates) we can match treated

and control individuals, so that the latter act as counterfactuals for the former.

Conditional independence implies that the above results are valid for a given

Xi, that is E[Y1i|Xi] = E[Y1i|Di = 1, Xi] = E[Yi|Di = 1, Xi] and E[Y0i|Xi] =

E[Y0i|Di = 0, Xi] = E[Yi|Di = 0, Xi], and, as a result:

αATE = E[Y1i − Y0i] = E[E[Y1i − Y0i|Xi]]

=

∫
E[Y1i − Y0i|Xi]dF (Xi)

=

∫
(E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi])dF (Xi). (11)

In words, the bottom expression computes the difference in average observed out-

comes of treated and control individuals that share each value of Xi, and integrate
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over the distribution of Xi. Thus, it is “matching” treated individuals with con-

trols that share the same Xi. Similarly, the treatment effect on the treated is:

αTT =

∫
E[Y1i − Y0i|Di = 1, Xi]dF (Xi|Di = 1)

=

∫
E[Yi − E[Y0i|Di = 1, Xi]|Di = 1, Xi]dF (Xi|Di = 1)

=

∫
E[Yi − µ0(Xi)|Di = 1, Xi]dF (Xi|Di = 1), (12)

where µ0(Xi) ≡ E[Yi|Di = 0, Xi], and we use the fact that E[Yi|Di = 0, Xi] =

E[Y0i|Xi] = E[Y0i|Di = 1, Xi]. The function µ0(Xi) is used as an imputation

device (matching) for Y0i.

Finally, sometimes we cannot assume conditional independence:

(Y1i, Y0i) 6⊥⊥ Di|Xi. (13)

In this case, we will need some variable Zi that provides exogenous variation

in the treatment, meaning that it satisfies the independence assumption:

(Y1i, Y0i) ⊥⊥ Zi|Xi, (14)

and the relevance condition:

Zi 6⊥⊥ Di|Xi. (15)

As we discuss in Chapter 4, in this context we are only going to be able to identify

an average treatment effect for a subgroup of individuals, and we call the resulting

parameter a local average treatment effect.

IV. Linear Regression and Treatment Effects

The potential outcomes notation is very useful to think about causality, but it

can be cumbersome. Rearranging the terms in Equation (1) yields:

Yi = Y0i(1−Di) + Y1iDi

= Y0i + (Y1i − Y0i)Di

= E[Y0i] + (Y1i − Y0i)Di + (Y0i − E[Y0i])

≡ β0 + βiDi + Ui. (16)

Equation (16) gives an expression for the causal effect of Di on i, which is given

by the random coefficient βi.
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Note that βi is different for different individuals. To fix ideas, assume initially

that βi = β for all i. In this case, β is the coefficient of a linear regression of out-

come on treatment dummy. Since βi is a constant, Y1i−Y0i is also a constant, and

αATE = αTT = β. As in a linear regression, consistently estimating β requires that

the error term Ui, or equivalently, Y0i, is independent the treatment variable Di.

If βi is not a constant, we can also obtain the average treatment effect on the

treated αTT by a similar linear regression. Consider the following linear regression:

Yi = β0 + β̄Di + Ui. (17)

Recall from undergraduate econometrics that the slope coefficient in a linear re-

gression with constant is the ratio between the covariance of the outcome and the

regressor divided by the variance of the regressor. Thus:

β̄ =
Cov(Yi, Di)

Var(Di)
=

E[YiDi]− E[Yi]E[Di]

E[D2
i ]− E[Di]2

. (18)

To operate this expression, we first note that Di only takes values of zero and one,

and, thus, D2
i = Di. Given this, the denominator boils down to:

E[D2
i ]− E[Di]

2 = E[Di](1− E[Di]). (19)

To operate the numerator, we appeal to the law of iterated expectations and the

fact that Pr(Di = 1) = E[Di]. Given this, the first term of the covariance is:

E[YiDi] = E[Yi · 1|Di = 1] Pr(Di = 1) + E[Yi · 0|Di = 0] Pr(Di = 0)

= (β0 + E[βi|Di = 1] + E[Ui|Di = 1])E[Di], (20)

the first element of the second term is:

E[Yi] = (β0 + E[βi|Di = 1] + E[Ui|Di = 1])E[Di] + (β0 + E[Ui|Di = 0])(1− E[Di])

= β0 + E[βi|Di = 1]E[Di] + E[Ui|Di = 1]E[Di] + E[Ui|Di = 0](1− E[Di]),
(21)

and the covariance is:

E[YiDi]− E[Yi]E[Di]

= {E[βi|Di = 1] + (E[Ui|Di = 1]− E[Ui|Di = 0])}E[Di](1− E[Di]). (22)

Thus, the regression coefficient is:

β̄ = E[Y1i − Y0i|Di = 1] + (E[Y0i|Di = 1]− E[Y0i|Di = 0]) = β, (23)
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which is equal to the average treatment effect on the treated plus the selection bias.

To finish with this chapter, we expand a bit on the connection between regression

and treatment effects. In particular, we reestablish the notion of conditional

independence in the regression context, and introduce a few extra discussions

associated to it. These points are illustrated with an example about the effects of

schooling on wages.

A. Conditional independence

Consider the treatment effect analysis that studies the effect of education on

wages. Let Ci denote the treatment, such that Ci = 1 if individual i goes to

college, and Ci = 0 otherwise. Let Y1i denote the earnings of this individual if

she attends college, and Y0i her earnings if she does not. A regression of observed

wages on a college dummy provides an estimate of β, as discussed above. In this

context, however, it is plausible that the selection bias is not zero. In particular,

individuals with more “ability” are more likely to obtain education and also, they

are more productive in the labor market, whether they get education or not. Thus,

the sample of individuals with Ci = 1 has, on average, higher ability than those

with Ci = 0, and, thus, their wages when they do not study (and also those when

they study) are, on average, higher. In other words, this regression exaggerates

the benefits of college, as:

E[Y0i|Ci = 1]− E[Y0i|Ci = 0] > 0, (24)

and, thus β > αTT .

However, if we can “control” for ability, Ai, the independence assumption is

more plausible:

E[Y0i|Ai, Ci = 1]− E[Y0i|Ai, Ci = 0] = 0. (25)

In words, this means that, for a given level of ability Ai, individuals that go to

college are not systematically different than those who do not go.

B. Omitted variable bias

In terms of a regression, we typically think of including Ai as a control in the

regression:

Yi = β0 + βCi + γAi + Ui, (26)

even though we could additionally add an interaction term between Ai and Ci.

Under the conditional independence assumption, we think that the long regression
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in Equation (26) has a causal interpretation, whereas the short one in (17) has not.

The omitted variable bias formula provides a connection between the pa-

rameters identified in the two equations. Note the connection between the two

equations by defining Ũi ≡ γAi + Ui, and rewritting (26) as:

Yi = β0 + βCi + Ũi. (27)

Now, the regression coefficient, denoted by β̃, equals:

β̃ =
Cov(YiCi)

Var(Ci)

=
Cov(β0 + βCi + Ũi), Ci

Var(Ci)

= β +
Cov(Ũi, Ci)

Var(Ci)
. (28)

The second term is the omitted variable bias. We can rewrite the omitted variable

bias formula as:

Cov(Ũi, Ci)

Var(Ci)
=

Cov(γAi + Ui, Ci)

Var(Ci)

= γ
Cov(AiCi)

Var(Ci)
+

Cov(UiCi)

Ci

= γ
Cov(AiCi)

Var(Ci)
. (29)

We establish that the second term in the central expression is equal to zero using

the conditional independence assumption, which implies E[Ui|Ai, Ci] = 0, the law

of iterated expectations, and that E[Ui] = E[Y0i − E[Y0i]] = 0 by construction:

Cov(Ui, Ci) = E[UiCi]− E[Ui]E[Ci] = E[UiCi] = E[E[Ui|Ai, Ci]Ci] = 0. (30)

Thus, the omitted variable bias, given by Equation (29) equals to γ, which deter-

mines the mapping between ability and outcome, and Cov(AiCi)/Var(Ci), which

is the slope coefficient of a regression that related ability and the treatment. In

our example, the treatment and ability are positively associated, and ability is

also likely to be positively related to outcomes, so the omitted variable bias would

be positive (we overestimate the effect of schooling on wages).

To illustrate this, we reproduce below Table 3.2.1 from Angrist and Pischke,

which estimates such regressions with data from the National Longitudinal Sur-

vey of Youth (1979). The advantage of this dataset is that contains information

about the Armed Forces Qualification Test (AFQT), which can be used to control
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for ability. We also introduce age dummies, which can be associated with experi-

ence, some other controls, including mother’s and father’s education and dummy

variables for race and census region, and occupation dummies, even though this

might be a bad idea as discussed below.

(1) (2) (3) (4) (5)

Col. (2) and Col. (2) with

Age Additional Col. (3) and Occupation

Controls: None Dummies Controls* AFQT score Dummies

0.132 0.131 0.114 0.087 0.066

(0.007) (0.007) (0.007) (0.009) (0.010)

Note: Data are from the National Longitudinal Survey of Youth (1979 cohort, 2002 survey). The table
reports the coefficient on years of schooling in a regression of log wages on years of schooling and the
indicated controls. Standard errors are shown in parentheses. The sample is restricted to men and
weighted by NLSY sampling weights. The sample size is 2,434.
* Additional controls are mother’s and father’s education and dummies for race and census region.

Results from the table suggest that ability is an important omitted covariate,

and that treatment is not independent of ability. In particular, the coefficient

in Column (3) is already somewhat smaller than those in Columns (1) and (2),

and the coefficient in Column (4) is substantially smaller. This is so because

mother’s and father’s education can be correlated with children’s ability, and

AFQT is positively correlated with ability. Since ability is positively correlated

with schooling and wages, the omitted variable bias is positive.

There are two final remarks to make about the results in the previous table.

First, note that years of schooling (which is the treatment variable) is not a zero-

one variable in this case. Second, we haven’t discussed Column (5). The remaining

of the chapter addresses these two points.

C. Treatment variables that take more than two values

Even though we discuss continuous treatments in more detail below this example

motivates that we discuss now discrete treatments with more than two possible

values, like schooling. In this case, we define the treatment effect function as:

Ysi ≡ fi(s). (31)

In our college vs high school example, Y1i = fi(16) and Y0i = fi(12). In other

words, fi(s) answers the causal “what if” question for every possible value of

s, even if the observed schooling is a particular value Si. This treatment effect

function can be linear (i.e. fi(s)−fi(s−1) = fi(s
′)−fi(s′−1) for any s 6= s′) or not.
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D. Endogenous controls

Finally, we discuss the introduction of occupation as a control. Occupation is

could be endogenous to the treatment, as college educated individuals are more

likely to work in white collar occupations than high school dropouts. Thus, define

the observed white collar dummy as:

Wi = W1iCi +W0i(1− Ci), (32)

where Wi = 1{white collar}. For simplicity, assume that Ci is randomly allocated

across individuals. Thus, we can estimate the average treatment effects:

E[Yi|Ci = 1]− E[Yi|Ci = 0] = E[Y1i − Y0i], (33)

and:

E[Wi|Ci = 1]− E[Wi|Ci = 0] = E[W1i −W0i]. (34)

However, if we estimate the causal effect of college on wages conditional on occu-

pation (for example, conditional on Wi = 1) we obtain:

E[Yi|Wi = 1, Ci = 1]− E[Yi|Wi = 1, Ci = 0] = E[Y1i|W1i = 1]− E[Y0i|W0i = 1].
(35)

Thus, we are subtracting apples and oranges, as the population of individuals

with W1i = 1 is different from that with W0i = 1. The first group is individuals

who work in white collar if they go to college (but not necessarily do so if they

only complete high school), whereas the second group is the set of individuals that

work in white collar when they do not go to college (and probably also do so if

they go). Specifically, we can rewrite Equation (35) to obtain:

E[Yi|W1i = 1]− E[Yi|W0i = 1]

= E[Y1i − Y0i|W1i = 1]︸ ︷︷ ︸
causal effect

+ (E[Y0i|W1i = 1]− E[Y0i|W0i = 1])︸ ︷︷ ︸
selection bias

. (36)

In the example of returns to years of education, the coefficient falls from 0.087

to 0.066. However, it is hard to say what we should make of this decline. The

selection bias in this context can be positive or negative, depending on the re-

lation between occupational choice, school attendance, and potential earnings.

This change in the coefficient may simply be an artifact of the selection bias.

So we would do better to control only for variables that are not themselves caused

by education.
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