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I. Introduction

Auctions are often used as mechanisms for allocation of resources to bidders in

an as efficient as possible way. There are many interesting real-world applications

that generate interesting data and a great deal of opportunities for empirical inves-

tigation, raising interesting issues. As a result, there is an important and growing

literature in empirical micro that aims at structurally estimating the parameters

of the bidders’ valuations. This is of fundamental importance for auction design,

because they allow the simulation of efficiency results under different types of auc-

tion mechanism. It allows to determine the optimal design, and the parameters

of this design (e.g. the reserve prices).

Since the aim of this section is only to provide a brief introduction to the struc-

tural estimation of auctions, we focus on two particular types of auctions: first

and second price sealed bid auctions for one good, N players, and independent

valuations vi for i = 1, ..., N . In the first price sealed bid auctions, each player

simultaneously submits a bid, and the object is assigned to the highest bidder,

who pays the price she bid. In the second price sealed bid auctions, the highest

bidder wins, but pays the bid of the second highest bidder. The literature has

studied other types of auctions. For example, English auctions are similar to first

price sealed bid auctions except that bidders sequentially call ascending prices,

and other players observe bids. In Dutch auctions, the price is reduced until a

player accepts the offer, so only the winning bid is ever observed. In Japanese

auctions, players exit as the auctioneer raises the price, and the winner pays the

price at which the only other remaining bidder exits. While Dutch auctions are

strategically equivalent to first price sealed bid auctions, Japanese auctions are

not necessarily strategically equivalent to second price sealed bid auctions, because

players update their information sets as the auction evolves.

As noted above, we focus on single object first and second price sealed bid

auctions. There are N risk-neutral bidders (indexed by i = 1, ..., N) and they

have valuations vi, independently drawn from a common distribution F (·). The
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data consists of the outcomes observed across independent auctions k = 1, ..., K

that follow the same paradigm. In this introductory review, we focus on the

case where individual i observes her own valuation vi, but not other players’

valuations. The literature also analyzes the case in which the individual, instead,

has a signal xi 6= vi, but does not observe vi, and also the case in which different

players have a (partially) common valuation. Players submit a single bid bi ∈ IR+

and do not observe other players’ bids. The econometrician only observes bids,

either all of them, or only the winning bid or price. The structural estimation of

auction models usually rely on the equilibrium bid functions and on distributional

assumptions regarding F (·), which often is specified parametrically.

The literature focuses on Perfect Bayesian Equilibria in weakly undominated

pure strategies. A bidding strategy is a function that maps valuations into bids.

The bidding strategy is the equilibrium solution of a expected utility maximization

problem.

II. Equilibrium bid functions

A. Second price sealed bid auctions

In second price sealed bid auctions, it is a weakly dominant strategy for ev-

ery individual to bid her expected valuation, i.e. bi = vi. Intuitively, bidding

more implies winning some auctions that yield negative expected value but leaves

unchanged the expected value of any other auction that would be won, whereas

bidding less implies losing some auctions that yield positive expected value but

leaves unchanged the expected value of any other auction that she would win.

B. First price sealed bid auctions

In a first price sealed bid auction, best responses are slightly more complicated,

because, unlike in the second price counterpart, changing the bid not only af-

fects the probability of winning, but also the price to pay. Let p(b) denote the

probability of winning the auction with bid b, defined as:

pi(b) ≡ Pr(max{bj}j 6=i ≤ b). (1)

Then, bi solves:

bi = arg max
b

(vi − b)pi(b). (2)
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The resulting bi is the best response to other player’s expected actions. The first

order condition yields:

(vi − bi)p
′(bi)− p(bi) = 0. (3)

Totally differentiating this expression with respect to b and v, we obtain:

dbi
dvi

=
−p′(bi)

(vi − bi)p′′(bi)− 2p′(bi)
> 0. (4)

The last inequality is obtained from observing that the denominator is the second

order condition (and, hence, it is negative), and that the winning probability is

increasing in the bid. Therefore, if players are in pure strategy equilibrium with

an interior solution, then bi is increasing in vi. This ensures invertibility, and,

hence, identification.

III. Identification

A. Second price sealed bid auctions

Let F (v) denote the distribution of valuations. In a second price sealed bid

auction, the distribution of valuations is trivially identified if all bids are observed

because, as noted before, all players bid their valuation.

The case in which only the winning price is observed (in each of K auctions in

which the same equilibrium is played) is a bit more convoluted. If only the win-

ning price is observed, which equals to the second highest bid, then the probability

distribution of the second highest valuation, denoted by FN−1,N(v) is identified

trivially from the distribution of paid prices. Let fN−1,N(v) denote the corre-

sponding density. Given symmetry and independence, this density equals:

fN−1,N(v) = N(N − 1)F (v)N−2(1− F (v))f(v). (5)

Intuitively, the N(N − 1) comes from the combinatorial possibilities in which v is

the second highest valuation, F (v)N−2 is the probability that N−2 valuations are

lower than v, and 1− F (v) is the probability that one of them is higher. Given a

boundary condition FN−1,N(v) = F (v) = 0, and noting that f(v) > 0 above the

boundary condition, the identification of F (v) comes from solving the differential

equation above.

B. First price sealed bid auctions

In first price sealed bid auctions, identification comes from the first order con-

dition above. If all bids are observed, then p(b) is trivially identified. Hence, vi is
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identified from (3):

vi = bi +
p(bi)

p′(bi)
= bi +

G(bi)

(N − 1)g(bi)
, (6)

where G(·) and g(·) are respectively the cdf and pdf of observed bids, and the latter

equality is obtained from noting that p(b) = G(b)N−1. Therefore, the probability

distribution of (v1, ..., vN) is identified off the bidding distribution G(b).

If only the winning bid is recorded, the distribution of winning bids, H(b) is

identified from the outcomes observed in the different auctions. Since the winning

bid is defined as the highest one, H(b) is just the probability that all the bids in

all the auctions are less than or equal to b, such that:

H(b) = Pr(bki ≤ b∀i = 1, ..., N) = G(b)N . (7)

Therefore:

G(b) = H(b)
1
N , (8)

and:

g(b) =
1

N
H(b)

1
N
−1h(b), (9)

where h(b) is the density of winning bids. Replacing these two in (6), this shows

that the bidding distribution is identified off the winning bid distribution.

IV. Estimation

Estimation strategies range from minimum distance to maximum likelihood.

In minimum distance estimation, once the distribution of bids is derived, up to

parameter values, these parameters are estimated comparing sample moments of

the observed bids against theoretical moments of the G(·) distribution for each

parameter value. Sometimes, this moments are trivial functions of the parameters,

and standard minimum distance methods are easy to implement. Other times,

it is too costly to derive the theoretical moments from the distribution, and we

proceed with simulated method of moments, using Monte Carlo approaches. In

particular, for a given set of parameters, valuations are drawn for all players.

This valuations correspond to bids, given the equilibrium bidding strategies of

each player. Keeping the seed fixed, iterate over parameters to minimize the

distance between simulated and data moments. Maximum likelihood approaches

are also feasible, but have the complication that the upper bound of the support

often depends on parameter values, which lead to estimates that, while consistent,

are not asymptotically normal.
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