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I. Introduction

The estimation of oligopolistic discrete games is very popular in industrial or-

ganization (IO). Dynamic games are important for the analysis of situations that

involve dynamic strategic interactions between multiple agents. The crucial ele-

ment of these interactions is that player’s current decisions affect their own payoffs

and those of other players today and in the future. Players make forward looking

decisions taking into account the implications of their choices and of the expected

behavior of their opponents.

II. Motivating example: market entry and exit

As a motivating example, we consider firms’ decision of entry/continuation/exit

from a market. Markets are small and isolated, and we focus on the retail sector.

Each active firm operates at most in one location or store. We observe a random

sample of markets m = 1, 2, ...,M . In each market, there are N potentially active

and infinitely lived firms which decide simultaneously whether to operate or not.

The distinction here between firms and markets is very important. We have

N ×M firms (we assume that firms at most operate in one market) whose payoffs

are affected by the decisions of other players in the same market. This is the main

difference with what we have seen so far.

In our example, the profit function is:

Πit = θRS lnSm(i)t − θRN ln

1 +
∑

{j:j∈m(i),j 6=i}

djt

 , (1)

where djt = 1 if firm j is active in marked m(j) and Sm(i)t is the market size. This

profit function can be interpreted as the outcome of a static symmetric game. In

a competitive setup, there are so many players that individual firm’s decisions do

not affect decisions of other firms, as the measure of firms operating in the market

is unaffected. However, in an oligopolistic market, the number of firms operating
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in the market is a best-response function with respect to competitor’s choices.

The fixed cost paid every year by a firm active on a market is:

Fit = ωFi + ε1it, (2)

where ε1it represents an idiosyncratic shock to firm i’s fixed cost. The entry cost,

paid only when the firm was not active in the previous period, is given by:

Eit = (1− dit−1)ωEi. (3)

Hence, the total current profits of an active firm with observable state variables

xit ≡ (Sm(i)t,d
′
−i, dit−1)

′, where d−i is the vector of choices for all firms in the

same market as i except i itself, are:

Uit(1,xit,ωi, εit) = (4)

θRS lnSm(i)t − θRN ln

1 +
∑

{j:j∈m(i),j 6=i}

djt

− ωFi − (1− dit−1)ωEi + ε1it.

The profit function of a non-active firm is given by the value of the best outside

option, that we assume to be:

Uit(0,xit,ωi, εit) = ωNi + ε0it, (5)

where ωNi is normalized to zero for identification purposes.

The unobserved state vector εit is assumed to be private information of firm i,

unknown by other players in the market. We assume that it is normally dis-

tributed, i.i.d. across firms and markets, and over time, with zero mean. xit and

ωi are common knowledge. The researcher observes xit but not εit and ωi.

Note that this model embeds Rust’s framework with unobserved heterogene-

ity whenever θRN = 0. However, if θRN 6= 0, d∗it(xit,ωi, εit) is a best response

function. The actual decisions are given by the solution of the Nash equilibrium.

Full solution methods are often unfeasible in this context. Aguirregabiria and

Mira (2007) propose a Hotz-Miller based estimation method for dynamic discrete

games. A potential complication of this may be the existence of multiple equilib-

ria, but it can also be handled in estimation.

III. General structure

One of the costly aspects of dynamic discrete games is the need for solving for

the equilibrium in each period. If in single agent problems solving for the value

functions implies a nested fixed points, in the games context there is a double
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nesting because on top of solving for the individual’s problem, one also needs to

solve for the equilibrium conditions. CCP estimations has turned particularly

important in developing techniques that allowed us to advance in the possibilities

of estimating such problems.

To generalize the setup from the example above, let dit denote the own action

of individual i, and let d−it ≡ (d1t, ..., di−1,t, di+1,t, ..., dIt)
′ denote the actions of all

other I − 1 players. The flow utility of individual i choosing alternative j is thus:

uij(xt,d−it) + εijt, (6)

where εit ≡ (εi1t, ..., εiJt)
′ is an i.i.d. random variable privately observed by in-

dividual i but not by the others. The vector xt, on the contrary, is observed by

all individuals, and, therefore, includes the state variables of all individuals. The

dependence of uij(·) on i is a reflection of the possibility of different state variables

affecting payoffs differently (e.g. own state variables vs other individuals’); the

absence of t in it reflects that we are in a stationary environment.

Choices are taken simultaneously in each period. We concentrate on rational

stationary Markov perfect equilibria, which imply that, given that εit is i.i.d.

across individuals, individual i expects other agents to make choices d−it with

probabilities:

Pr(d−it|xt) =
∏
j 6=i

Pr(djt|xt). (7)

These CCPs represent the best-response probability functions. In this type of

models, an equilibrium exists, but uniqueness is rather unlikely to hold. However,

these CCPs uniquely identify the beliefs of agents.

Taking expectations of uij(xt,d−it) over d−it, we obtain:

ũij(xt) =
∑

d−it∈DI−1

Pr(d−it|xt)uij(xt,d−it). (8)

These concentrated payoffs resemble the standard payoffs of the single-agent mod-

els seen so far. Now we additionally need to construct the continuation values.

The difficulty on that front is that the state variables, which follow a process

given by Fx(xt+1|xt, dit,d−it), depend on the unobserved choices by the other in-

dividuals. Following a similar idea, we can obtain the concentrated transition

functions as:

F̃i(xt+1|xt, dit) =
∑

d−it∈DI−1

Pr(d−it|xt)Fx(xt+1|xt, dit,d−it). (9)
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Given all this, the conditional value functions can be expressed as:

vij(xt) = ũij(xt) + β

∫
V (xt+1)dF̃i(xt+1|xt, dit), (10)

and then V (xt+1) can be replaced the standard CCP representation, i.e.:

vij(xt) = ũij(xt) + β

∫
[vik(xt) + ψk(pi(xt))] dF̃i(xt+1|xt, dit). (11)

IV. Identification and estimation

The use of CCP estimation methods made the estimation of these models feasi-

ble. Full solution maximum likelihood approaches would not be tractable, because

it would require solving for the equilibrium of the game (on top of solving for the

dynamic problem). All the discussion below is predicated on the following two

assumptions: 1) every observation in the sample comes from the same Markov Per-

fect Equilibrium, and 2) there are no unobserved common-knowledge variables.

Given the first assumption, the multiplicity of equilibria in the model does not play

any role in the identification of structural parameters. For non-parametric iden-

tification of the payoff functions, one further needs to assume a known discount

factor, and the presence of an exclusion restriction (i.e., there is some observable

variable that is player-specific and that has no direct effect on opponents’ payoff,

that is, xt ≡ (s1t, ..., sNt,wt) is such that uij(xt, d−it) = uij(sit,wt, d−it).

A. Aguirregabiria and Mira (2007)

Once the model is transformed in terms of ũij(xt) and F̃i(xt|xt, dit), estimation

follows standard CCP procedures, which range from likelihood or GMM versions

of Hotz and Miller (1993) to the iterative Nested Pseudo-Likelihood algorithm in

Aguirregabiria and Mira (2002). The latter is the approach adopted in the seminal

paper by Aguirregabiria and Mira (2007). Kasahara and Shimotsu (2008) show

that when the equilibrium in the population is stable, then this recursive procedure

reduces significantly the small sample bias generated in the one-step CCP based

methods, which, in the case of games increases rapidly both with the number of

state variables and in the number of players.

B. Bajari, Benkard, and Levin (2007)

Bajari, Benkard, and Levin (2007) provide a similar alternative, which is based

on the Hotz, Miller, Sanders, and Smith (1994) forward simulation method. In

particular, these authors propose the following three-step method. First, estimate
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the transition functions F and CCPs from the data. Second, forward simulate a

sequence of optimal choices and states drawing from the distributions dictated by

CCPs and transition functions. Finally obtain the parameters maximizing your

preferred pseudo-likelihood or GMM criterion function. This method, like Aguir-

regabiria and Mira (2007), allows the researcher to be agnostic about equilibrium

selection, and provides a side-step to the problem of multiple equilibria.
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