
Chapter 4. Conditional Choice Probability (CCP) estimation

Joan Llull

Structural Econometrics for Labor Economics
and Industrial Organization

IDEA PhD Program

I. Introduction

The estimation of dynamic discrete choice models using the approaches de-

scribed in the previous chapter is often challenging computationally, and some-

times even unfeasible. In this chapter, we review alternative estimation techniques

that dramatically reduce the computational burden of the estimation. These

methods avoid having to solve the dynamic programming problem (DP) in each

iteration of the estimation algorithm. They are not as efficient as full solution

methods, but they are much faster to implement. Additionally, the process of

deriving the specific representation that allows estimation without solving the DP

provides more transparent insights of the sources of variation in the data that iden-

tify the parameters of the model. Finally, the faster estimation algorithms allow

the researcher to carry robustness checks. These techniques allow the estimation

of problems that would be otherwise out of reach, like dynamic games or non-

stationary environments in which the full time horizon is not covered in the data

and the researcher is unwilling to make assumptions regarding how expectations

are formed outside of the sample.

The methods that we discuss here build on the seminal work of Hotz and Miller

(1993). These authors noted that individual choices contain rich information on

individual expectations about future outcomes. Intuitively, the individuals have

already solved their optimization problem, so their decisions, as reflected in their

CCPs, are informative of their value functions. Thus, they show that there exists a

mapping between conditional choice probabilities (CCPs) and alternative-specific

value functions vjt(xt) that, under general conditions, can be inverted. Repre-

senting the mapping as a function of the CCPs instead of the value functions, and

armed with nonparametric estimates of the CCPs avoids the need for a solution

of the DP in estimation.

II. Conditional choice probability (CCP) representation

A. Models requiring only one-period-ahead choice probabilities

We start analyzing the CCP representation in the easiest possible case, in which

the conditional value functions are expressed only as a function of one-period-

1

ahead conditional choice probabilities. We begin with the Rust example, intro-

duced in the previous chapter, and then we generalized to the subclass of models

that share this type of representation.

The Rust example To illustrate how this method works in practice, consider

the fixed point in the Rust engine replacement example in the previous chapter:

vj(xt) = uj(xt) + β
∑
x∈X

ln

(∑
h∈D

exp{vh(x)}

)
F j
x,xt + βγ. (1)

Given the Type-I extreme value assumption, the CCPs are of logit type:

pjt(xt) =
evjt(xt)∑
h∈D e

vht(xt)
. (2)

Without loss of generality, we can rewrite them in terms of a base category. In

this context, it is convenient to use replacement as the base category:

p1(x) =
1

1 + ev0(x)−v1(x)
and p0(x) =

ev0(x)−v1(x)

1 + ev0(x)−v1(x)
. (3)

Given this:

− ln p1(x) = ln
(
1 + ev0(x)−v1(x)

)
= ln

(∑
h∈D

exp{vh(x)− v1(x)}

)
. (4)

Rewriting Equation (1):

vj(xt) = uj(xt) + β
∑
x∈X

ln

(
ev1(x)

∑
h∈D

exp{vh(x)− v1(x)}

)
F j
x,xt + βγ

= uj(xt) + β
∑
x∈X

(v1(x)− ln p1(x))F j
x,xt + βγ

= uj(xt) + βv1(0)− β
∑
x∈X

ln p1(x)F j
x,xt + βγ. (5)

The last step uses the fact that v1(x) = v1(0) ∀x, as the utility of replacement

does not depend on mileage. Noting that
∑

x∈X ln p1(x)F 1
x,xt = ln p1(0), as F 1

x,xt

is degenerate, we can finally write:

v0(xt)− v1(xt) = u0(xt)− u1(xt) + β

(
ln p1(0)−

∑
x∈X

ln p1(x)F 0
x,xt

)

= θR − θMxt + β

(
ln p1(0)−

∑
x∈X

ln p1(x)F 0
x,xt

)
. (6)

2

We can obtain non-parametric estimates of p1(x) from the data, for instance from

relative frequencies:

p̂1(x) =

∑N
i=1

∑T
t=1 d1it 1{xit = x}∑N

i=1

∑T
t=1 1{xit = x}

. (7)

Finally, we can replace p1(x) by p̂1(x) in Equation (6), and replace this expression

into Equation (3), which describes a straightforward binary logit (as in the two-

step Rust algorithm, we typically estimate F 0
x,xt separately in a first stage).

General representation Similar ideas can be implemented for finite horizon,

and with different assumptions on the residuals, as long as a mapping between

CCP and conditional value functions exists and it is invertible. In particular:

pJt(xt) ≡
∫
d∗Jt(xt, εt)dFε(εt)

=

∫ ∞
−∞

∫ εJt+vJt(xt)−vJ−1t(xt)

−∞
...

∫ εJt+vJt(xt)−v1t(xt)

−∞
dFε(εt)

≡ QJ(vJt(xt)− v1t(xt), ..., vJt(xt)− vJ−1t(xt)). (8)

We can write analogous mappings Qj(.) for j = 1, ..., J − 1. The main theorem

in Hotz and Miller (1993) specifies that if we define pt such that pjt > 0 ∀j, then

there exists a real-valued function ψj(p) for every j ∈ D such that:

ψj(pt(xt)) ≡ Vt(xt)− vjt(xt). (9)

This formulation of the theorem is drawn from Arcidiacono and Miller (2011). The

original formulation specifies ψj(p) ≡ Q−1j (p) as a function of differences in con-

ditional value functions. In our example ψj(·) has the following form:

ψj(p(xt)) = − ln pj(xt) + γ, (10)

where γ is the Euler-Mascheroni constant.

Note that Equation (9) can be rewritten as:

Vt(xt) = vjt(xt) + ψj(pt(xt)). (11)

This expression is closely connected to the selection models reviewed in the Mi-

croeconometrics course. For example, in the Heckman selection model we first

estimated the probability to be in the sample and then we computed the λ(·)
correction as a function of the parameters governing this probability. The term

ψj(pt(xt)) plays exactly the same role here. Thus, (11) tells us that the ex-ante

3

value function can be expressed as the sum of the deterministic part of the util-

ity associated to one of the choices plus a correction factor that accounts for the

fact that E[εjt|djt = 1] (i.e. the expectation of the random component given that

option j is selected) is not zero. Intuitively, the less likely is alternative j to be

chosen (the lower the CCP) the more positive the draw of εjt needs to be for j to

be the optimal choice.

This mapping can help us in rewriting the DP into a known function of data,

parameters, and CCPs. In the previous chapter, we defined conditional value

functions as:

vjt(xt) ≡ ujt(xt) + β

∫
Vt+1(xt+1)dFx(xt+1|xt, j). (12)

Substituting for Vt+1(xt+1) using Equation (11) (for any alternative k) yields:

vjt(xt) ≡ ujt(xt) + β

∫ [
vkt+1(xt+1) + ψk(pt+1(xt+1))

]
dFx(xt+1|xt, j). (13)

We can repeat this procedure ad infinitum, substituting vkt+1(xt+1) using the

above expression, and then appealing to the inversion theorem of Hotz and Miller

(1993)/Arcidiacono and Miller (2011) in Equation (11). This would lead to a

representation that would not require solving for the value functions, provided we

have nonparametric estimates of the CCPs.

In the next section, we show that, for a large class of problems, dealing with the

remaining conditional value function is surprisingly straightforward. The key to

the argument is that the researcher can choose to which choice k to make the future

term relative. Because the choices are made by differencing each possible pair of

alternatives, a clever choice of alternatives k in the recursive forward substitution

can allow the difference in future utility terms across two choices to be equal and,

hence be differenced out.

Taking this idea to the extreme, the Rust example belongs to a class of models in

which this is so straightforward that only one-period-ahead CCPs are needed in the

estimation. In particular, this class of models include those in which either there is

a terminal action (no further decisions are made after this decision), or a renewal

action (state variables are re-initiated after this action, implying that the choice

in the previous period becomes irrelevant). An example of the first would be an

occupational choice model featuring a retirement choice, and the Rust model is an

example of the second. Let R denote the terminal/renewal action. In the terminal

action, we only require one-period-ahead CCPs because vRt+1(xt) does not have

a continuation value. Thus, replacing Vt+1(xt+1) by vRt(xt+1) + ψR(pt+1(xt+1))

4

we already eliminate the need to solve for the value functions in estimation.

The renewal action has the property that the state vector is reset in such a way

that the previous choices become irrelevant. Specifically, it implies that, for any

pair of choices dt and d′t:∫
fx(xt+1|xt, dt)fx(xt+2|xt+1, R)dxt+1 =

∫
fx(xt+1|xt, d′t)fx(xt+2|xt+1, R)dxt+1.

(14)

In words, the distribution of xt+2 after choosing renewal in t + 1 is the same

regardless of whether the individual initially chose dt or d′t in t. This implies that,

when comparing two choices, we can replace the ex-ante value function at t + 2

by its representation for the choice R, such that the resulting terms are common

to all choices and cancel out when writing the CCPs. Substituting (12) into (13),

and evaluating the second period at k = R, we obtain:

vjt(xt) = ujt(xt) + β

∫ [
vRt+1(xt+1) + ψR(pt+1(xt+1))

]
dFx(xt+1|xt, j)

= ujt(xt) + β

∫ uRt+1(xt+1)

+β
∫
Vt+2(xt+2)dFx(xt+2|xt+1, R)

+ψR(pt+1(xt+1))

 dFx(xt+1|xt, j)

= ujt(xt) + β

∫ [
uRt+1(xt+1) + ψR(pt+1(xt+1))

]
dFx(xt+1|xt, j) (15)

+ β2

∫ ∫
Vt+2(xt+2)fx(xt+2|xt+1, R)fx(xt+1|xt, j)dxt+2dxt+1.

Given the renewal property described in (14), the last term of (15) is invariant

to the choice j. Let alternative 1 denote the base category. The probability of

choosing option j, depends on the pairwise comparisons vjt(xt)−v1t(xt) for each j:

pjt(xt) =
exp(vjt(xt)− v1t(xt))∑
h∈D exp(vht(xt)− v1t(xt))

. (16)

Hence:

vjt(xt)− v1t(xt) (17)

= (ujt(xt)− u1t(xt)) + β

{ ∫ [
uRt+1(xt+1) + ψR(pt+1(xt+1))

]
dFx(xt+1|xt, j)

−
∫ [
uRt+1(xt+1) + ψR(pt+1(xt+1))

]
dFx(xt+1|xt, 1)

}
,

for every j ∈ D, which only requires the one-period-ahead CCPs.

B. Finite dependence

The ideas presented above for the case of renewal action are generalizable to a

larger class of problems, except that multiple-periods-ahead CCPs as opposed to

5

one-period-ahead are needed. In these models, ρ periods (and particular sequences

of choices) are needed to reset the system. After the ρ periods, the specified

combination of actions across the two paths undo the dependence on the initial

choice. In that case, we say that the problem exhibits finite dependence. First

introduced in Altuğ and Miller (1998), this idea is generalized by Arcidiacono and

Miller (2011). As in the renewal/termination action case, we begin illustrating

the idea with an example and then generalize.

Occupational choice example Consider a simplified version of the occupa-

tional choice model described in Keane and Wolpin (1997). In this version, indi-

viduals choose whether to say home dt = H or to work dt = W . The per-period

utility function for working depends on the wage, which is a function of experi-

ence (the flow of utility from the home alternative is normalized to zero). The

only (observable) state variable is experience, which is degenerate, and does not

depreciate. Therefore, if an individual does not work in the current period and

works in the next period, or she works in this period and does not work in the

next period, two periods from now, her level of experience is the same (xt + 1).

This equivalence is what we exploit to establish finite dependence, in this case,

achieved after one period.

Substituting (12) into (13), and evaluating the second period at k = H, we

express the working utility as:

vWt(xt) = uWt(xt) + β
[
uHt+1(xt + 1) + ψH(pt+1(xt + 1))

]
+ β2Vt+2(xt + 1).

(18)

Likewise, the utility of home can be expressed as:

vHt(xt) = uHt(xt) + β
[
uWt+1(xt) + ψW (pt+1(xt))

]
+ β2Vt+2(xt + 1). (19)

The CCPs depend on the difference between the two conditional value functions,

which can be expressed as:

vWt(xt)− vHt(xt) = uWt(xt)− uHt(xt) + β

[
uHt+1(xt + 1)− uWt+1(xt)

+ψH(pt+1(xt + 1))− ψW (pt+1(xt))

]
,

(20)

and only depends on the ρ-periods ahead CCPs, where, in this case, ρ = 1.

General representation In the example above, finite dependence is achieved

exactly, as the state vector two periods ahead coincides under both paths. This

is a sufficient but not necessary condition for finite dependence, which can be

established for stochastic state vectors as long as the same state results in expec-

6

tation. To see it, we define an expression for the cumulative probability of being

in a particular state given a particular decision sequence and an initial state. Let

{d′t, d′t+1, ..., d
′
t+ρ} define a sequence of decisions from t to t+ρ (no need to be opti-

mal). For each τ ∈ {t, ..., t+ρ}, denote κ′τ (xτ+1|xt) as the cumulative probability

of being in state xτ+1 given the specified decision sequence, recursively defined as:

κ′τ (xτ+1|xt) ≡

{
f(xt+1|xt, d′t) if τ = t∫
f(xτ+1|xτ , d′τ)κ′τ−1(xτ |xt)dxτ if τ > t.

(21)

Using this expression, we can telescope (13) ρ-periods ahead to obtain:

v{d′t}t(xt) = u{d′t}t(xt) +

t+ρ∑
τ=t+1

βτ−t
∫ [

u{d′τ}τ (xτ) + ψ{d′τ}(pτ (xτ))
]
κ′τ−1(xτ |xt)dxτ

+ βρ+1

∫
Vt+ρ+1(xt+ρ+1)κ

′
t+ρ(xt+ρ+1|xt)dxt+ρ+1. (22)

Now we can define an alternative sequence of decisions {d′′t , d′′t+1, ..., d
′′
t+ρ} that

lead the individual to the same state in expectation, or, equivalently, such that:

κ′t+ρ(xt+ρ+1|xt) = κ′′t+ρ(xt+ρ+1|xt) for all xt+ρ+1. (23)

Clearly, in the difference v{d′′t }t(xt)− v{d′t}t(xt), the last term of (22) cancels, and

the resulting expression only depends on flow payoffs and CCPs up to period t+ρ.

C. Infinite-horizon stationary settings

Recovering a representation of the value functions based on the CCPs is still

very straightforward in stationary infinite-horizon settings in the absence of finite

dependence. To do so, it is convenient to follow the matrix representation of

Aguirregabiria and Mira (2002), which we also use below to explain their nested-

fixed point algorithm. Define ε∗jt(xt) ≡ E[εjt|d∗t = j,xt], where d∗t denotes the

optimal choice. The ex-ante value function can be written as:

V (xt) = E[max
j
{vj(xt) + εjt}]

=
∑
j∈D

p(j|xt)
[
vj(xt) + ε∗jt(xt)

]
=
∑
j∈D

p(j|xt)

[
uj(xt) + β

∑
x∈X

V (x)f(x|xt, j) + ε∗jt(xt)

]
, (24)

where X denotes the set that includes the X possible values that xt+1 can take.

Note that we do not use subscript in V (·) to reflect the infinite-horizon stationary

7

nature of the setting. Now we can express each of the components of the previous

equation in matrix form:

V ≡

 V (x(1))
...

V (x(X))

 , uj ≡

 uj(x
(1))

...

uj(x
(X))

 , ε∗jt ≡

 ε∗jt(x
(1))

...

ε∗jt(x
(X))

 (25)

pj ≡

 p(j|x(1))
...

p(j|x(X))

 , Fj ≡

 f(x(1)|x(1), j) . . . f(x(X)|x(1), j)
...

. . .
...

f(x(1)|x(X), j) . . . f(x(X)|x(X), j)

 ,
so that (24) reads as:

V =
∑
j∈D

pj ◦ [uj + βFjV + ε∗jt], (26)

where ◦ denotes the Hadamard product (or element-by-element multiplication).

Solving for V in the above expression yields:

V =

(
IX − β

∑
j∈D

pjι
′
X ◦ Fj

)−1(∑
j∈D

pj ◦ [uj + ε∗jt]

)
, (27)

where IX denotes the size X identity matrix and ιX denotes the size X vector of

ones. This matrix expression is operational, in practice, in any standard matrix

software, and avoids the solution of the DP in estimation. Furthermore, it is

useful in the estimation of dynamic games, as we review later in the course.

III. Estimation methods

So far we have analyzed the case in which εt is i.i.d. across time, and there is

no persistent unobserved heterogeneity. The estimation methods that we describe

in this section are applicable to this type of models. Estimation occurs in two

stages. In the first stage, we estimate CCPs and transition functions for the

state variables. In the second stage, we form the value functions using the CCPs

estimated in the first stage and estimate the structural parameters. Despite the

CCPs are only approximated, CCP estimators of the structural parameters are√
N -consistent and asymtotically normal under standard regularity conditions.

However, the approximation error of the CCPs can introduce small sample bias in

the structural parameter estimates. This bias can be mitigated by updating the

initial nonparametric estimates with the CCPs implied by the structural model,

as we discuss in Section III.D below.

8

A. CCPs and transition functions

With unlimited data, both CCPs and transition functions can be estimated

nonparametrically using simple bin estimators. For example, the CCPs would be

estimated as:

p̂(dt = d|xt = x) =

∑N
i=1

∑T
t=1 1{dit = d}1{xit = x}∑N
i=1

∑T
t=1 1{xit = x}

. (28)

However, in reality data limitations and continuous state variables prevent us

from doing it this way. In this case, some smoothing is needed, either through

nonparametric kernels, basis functions, or flexibly specified logits or probits.

B. Estimating the structural parameters

The estimation of the structural parameters under finite dependence, infinite-

horizon stationary settings, or shortly-lived finite horizon settings is straightfor-

ward. The CCP representation that we discussed in the previous section together

with the CCP estimates obtained in the first stage lead to simple expressions that

can either be included in a likelihood estimation or in a GMM estimation. To

illustrate this, take the Rust example. Estimation by maximum likelihood would

follow a standard logit approach. This is, following with the expression obtained

in (6) the likelihood would be expressed as:

LN =
N∑
i=1

T∑
t=1

d1it ln p1(xit) + (1− d1it) ln[1− p1(xit)], (29)

where:

p1(xit) =
1

1 + exp
{
θR − θMxit + β

(
ln p̂1(0)−

∑
x∈X ln p̂1(x)F̂ 0

x,xt

)} . (30)

Alternatively, we can use a GMM (in this case simple regression) approach.

From (4) we know:

− ln p1(xit) = ln [1 + exp(v0(xit)− v1(xit)]

= ln

[
1 + exp

{
θR − θMxit + β

(
ln p̂1(0)−

∑
x∈X

ln p̂1(x)F̂ 0
x,xt

)}]
.

(31)

Rearranging the terms in the above expression yields:

ln

(
1− p̂1(xit)
p̂1(xit)

)
= θR − θMxit + β

(
ln p̂1(0)−

∑
x∈X

ln p̂1(x)F̂ 0
x,xt

)
. (32)

9

Even though this expression describes a relation that should hold exactly if p̂1(·)
and F̂ where replaced by population values, there is an econometric error in

sample because of the estimation of the CCPs and the transition functions. One

can exploit a large set of orthogonality conditions that this econometric error

satisfies and estimate this expression using GMM. As noted in Llull (2022) if one

have access to estimates of the CCPs obtained with a different dataset, those serve

as good instruments for the expressions in the right hand side of the expression

that are computed with the CCPs, like the one in parenthesis in (32), to correct

for the attenuation bias given by the measurement error in the (right-hand-side)

CCPs, and the potential biases that may arise from the correlation between the

measurement error of the term in the left hand side.

C. Forward simulation methods

In problems that do not exhibit finite dependence and are either long finite hori-

zon or short horizon but with a large state space, even computing the value func-

tions using the CCP representation can be cumbersome. Hotz, Miller, Sanders,

and Smith (1994) propose an alternative method that avoids having to visit all

future states for all individuals. This method is based on forward simulation,

based on the transition functions and, potentially, the CCPs.

The idea is the following. The continuation value
∫
V (xt+1)dFx(xt+1|xt, j) in-

volves integration over all possible future states of the world (paths) and all pos-

sible choices. This is costly, even with the CCP representation if there are many

paths for which we need to compute uj(·)+ψj(·). For example, in the Rust exam-

ple, even though there is only one state variable, next period’s state can take one

of three values, two periods ahead it can take six values, and so on. For each indi-

vidual, we should compute the value function in each of these possible paths and

then integrate over the probabilities of taking each of these paths. Alternatively,

forward simulation methods only compute them for a finite number of draws of

these future paths for each individual. Then, when averaging across individuals,

we obtain an approximation of the future expectation.

There are two versions of the method. In the most basic one, given the individ-

ual’s current state, we simulate a choice using the CCPs (pile up the CCPs into

a sort of cdf, draw a uniform U [0, 1], and pick the choice based on this “cdf”).

Given this choice, use the transition function to draw a value for the state next

period. Then, proceed recursively until T in finite horizon problems or until the

future is discounted enough to be unimportant in infinite horizon problems. The

second version selects the path of choices by strategically choosing k in the CCP

10

representation Vt+1(xt+1) = vkt(xt+1) +ψk(pt+1(xt+1)), and the path for the state

variables is drawn from the estimated transition function for the state variables.

D. Aguirregabiria and Mira’s iterative approach

Aguirregabiria and Mira (2002) propose nested algorithm that embeds Rust’s

nested fixed point (NFXP) and Hotz-Miller’s CCP estimation as special cases.

This method is a nested algorithm that swaps the order of the nest. In particular,

it uses the CCP representation and non-parametric estimates of the CCPs (as

in Hotz-Miller) to start the algorithm, and to recover a first estimation of the

parameters. For these parameter estimates, which are consistent estimates, we

then solve the model to calculate new estimates of CCPs, also consistent. Then

we feed the new CCPs back into the first step and repeat the process K times,

until reaching convergence in parameters and CCPs. This estimator delivers Hotz-

Miller’s CCP estimation when K = 0, and Rust’s nested fixed point algorithm

when K→∞ (i.e., when we iterate until convergence). Note that estimates are

consistent at any k = 0, ..., K iteration, so technically, there is no need to iterate

until convergence.

This is a swapping of the nested fixed point algorithm. To see it, rewrite (26)

to emphasize the dependence of the CCPs on the value functions, pj(V):

V =
∑
j∈D

pj(V) ◦ [uj + βFjV + ε∗jt(V)]. (33)

Rust’s nested fixed point describes an algorithm with an inner loop that first finds

V as a fixed point in this equation, and an outer loop updates the parameters. The

Aguirregabiria and Mira’s Nested Pseudo-Likelihood algorithm (NPL) reverts the

order of the nesting. The CCPs are mappings of the value function:

p = Λ(V). (34)

Rewriting (27) as:

V (p) =

(
IX − β

∑
j∈D

pjι
′
X ◦ Fj

)−1(∑
j∈D

pj ◦ [uj + ε∗jt(V)]

)
, (35)

which implies that p = Λ(V (p)) ≡ Ψ(p) describes a fixed point in the CCPs.

Therefore, Aguirregabiria and Mira swap the order of the nesting, with the fixed

point (in CCPs) in the outside loop and the update of the parameters in the

inner loop.

11

E. Results in the Rust example

We now update the estimates of the Rust example from previous chapter to

include estimates with the different methods described in this chapter. For the

estimation, we fix β = 0.99. The results obtained using each of the methods are:

Method Parameter Group 1, 2, 3 Group 4 Group 1, 2, 3, 4

NFXP θR 11.87 10.12 9.75

(1.95) (1.36) (0.89)

θM 5.02 1.18 1.37

(1.40) (0.28) (0.24)

CCP θR 11.76 10.21 9.62

(0.91) (0.71) (0.45)

θM -4.99 1.16 -3.95

(22.49) (13.48) (9.35)

NPL θR 11.72 10.19 9.59

(0.91) (0.71) (0.45)

θM -2.20 1.43 -2.11

(22.48) (13.46) (9.35)

Courtesy of José Garćıa-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro Rug-
gieri, who replicated Rust’s paper for the replication exercise in the Microeconometrics IDEA
PhD course in Fall 2014.

As discussed above, the CCP estimation can save important amounts of time,

but this comes at the cost of losing precision. In this example, this seems to be not

very relevant in the estimation of θR, but quite important for the estimation of θM .

Importantly, the estimation of the CCPs includes estimation error, and, if this is

substantial, it can create small sample biases in the estimation. The following

table shows a Monte-Carlo simulation in which we check the amount of time used

by each estimator (only NFXP and CCP), and the estimated parameters with dif-

ferent sample sizes. The exercise is based on 50 replications, and the running time

is cumputed based on a MacBookPro with 2.5GHz Intel Core i5, and 8GB RAM:

N.obs. Algorithm θR θM Time (sec.)

DGP 9.74 2.69

N = 100 NFXP 10.07 (0.90) 2.83 (0.39) 157.56

CCP 10.48 (0.40) -2.17 (6.91) 0.56

12

N = 1, 000 NFXP 9.78 (0.28) 2.67 (0.12) 160.57

CCP 10.04 (0.14) 2.19 (2.55) 47.84

N = 5, 000 NFXP 9.93 (0.11) 2.79 (0.05) 400.31

CCP 10.09 (0.05) 2.92 (0.93) 59.11

N = 10, 000 NFXP 9.85 (0.08) 2.73 (0.04) 1,030.70

CCP 9.99 (0.04) 2.64 (0.66) 121.38

N = 25, 000 NFXP 9.78 (0.05) 2.67 (0.02) 1,070.20

CCP 9.92 (0.02) 2.74 (0.41) 133.38

Courtesy of José Garćıa-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro
Ruggieri, who replicated Rust’s paper for the replication exercise in the Microeconomet-
rics IDEA PhD course in Fall 2014. Simulations executed with a MacBookPro, 2.5GHz In-
tel Core i5, 8GB RAM (50 replications, asymptotic standard errors from the first iteration are
in parentheses).

Clearly, the results show very important gains by CCP in computation time,

and the loss of precission diminishes substantially as sample size increases.

IV. Extensions: unobserved heterogeneity and competitive
equilibrium models

A. Unobserved heterogeneity

The expectation-maximization (EM) algorithm. As discussed in the previ-

ous chapter, the standard approach to introduce unobserved heterogeneity in dy-

namic discrete choice models uses mixture distributions, as proposed by Heckman

and Singer (1984). Given our assumptions, the log-likelihood can be written as:

LN(θ,π) =
N∑
i=1

ln

[
K∑
k=1

πk|xi1

T∏
t=1

ft(dit,xit+1|xit,ωk;θ)

]
. (36)

Note that this log-likelihood function is no longer additively separable, and we

cannot directly estimate it in two stages as before. The first order condition that

stems from maximizing the above likelihood is:

0 =
N∑
i=1

∑K
k=1 πk|xi1

∑T
t=1

[
∂ft(dit,xit+1|xit,ωk;θ)

∂θ

∏
t′ 6=t ft′(dit′ ,xit′+1|xit′ ,ωk;θ)

]
∑K

k=1 πk|xi1
∏T

t=1 f(dit,xit+1|xit,ωk;θ)

=
N∑
i=1

∑K
k=1 πk|xi1

∑T
t=1

[
∂ ln ft(dit,xit+1|xit,ωk;θ)

∂θ

∏T
t′=1 ft′(dit′ ,xit′+1|xit′ ,ωk;θ)

]
∑K

k=1 πk|xi1
∏T

t=1 f(dit,xit+1|xit,ωk;θ)
,

(37)

13

where the second expression is obtained by replacing ∂ft(·)/∂θ = ft(·)∂ ln ft(·)/∂θ.

This first order condition is easily reinterpreted using the Bayes’ Rule because the term:

πk|xi1
∏T

t′=1 ft′(dit′ ,xit′+1|xit′ ,ωk;θ)∑K
k=1 πk|xi1

∏T
t=1 f(dit,xit+1|xit,ωk;θ)

≡ $(k|di, Xi;θ,π), (38)

where π is the vector including all the type probabilities πk|xi1 for all k and i,

and di ≡ (di1, ..., diT)′ and Xi ≡ (xi1, ...,xiT)′, represent the probability of being

of type k conditional on the observed choices and state variables, and, therefore,

the FOC implies:

0 =
N∑
i=1

K∑
k=1

T∑
t=1

$(k|di, Xi;θ,π)
∂ ln ft(dit,xit+1|xit,ωk;θ)

∂θ
. (39)

Dempster, Laird, and Rubin (1977) note that the following maximization prob-

lem delivers exactly the same first order conditions:

θ̂ = arg max
θ

N∑
i=1

T∑
t=1

K∑
k=1

$(k|di, Xi; θ̂, π̂) ln ft(dit,xit+1|xit,ωk;θ), (40)

for π̂ that satisfies:

π̂k|x1 =

∑N
i=1$(k|di, Xi; θ̂, π̂)1{xi1 = x1}∑N

i=1 1{xi1 = x1}
. (41)

Given this premise, they propose the EM algorithm, that is an iterative procedure

that goes as follows. For any given guess θ(m) and π(m) the expectation (E) step

updates π(m+1) as follows. First update the conditional probabilities of being of

each step as $(k|di, Xi;θ
(m),π(m)) evaluating (38) at the guessed parameters θ(m)

and π(m). Then update π(m+1) averaging the new prediction across individuals

for each initial state value as in (41). Using these two, the maximization (M)

step updates θ(m+1) using (40). Iterating until convergence leads to consistent

estimates of θ and π. Note that the M-step of the algorithm reintroduces ad-

ditive separability (we are back to sum of logs), which, as shown in Arcidiacono

and Jones (2003), implies that the updating of transition functions and utility

parameters can be done separately.

Arcidiacono and Miller’s approach. The EM algorithm described so far

makes no use of CCP estimation. In fact, the application we just described

implicitly predicates on the estimation of the M-step using full solution meth-

ods. Using CCP estimation in this context has a non-trivial difficulty: the CCPs

and transition functions should be estimated conditional on the unobserved type,

14

which is difficult given that, by construction, types are unobserved. Arcidiacono

and Miller (2011) propose an implementation of the EM algorithm that allows

the estimation of dynamic discrete choice models with unobserved heterogeneity

using CCP estimation methods. Arcidiacono and Miller’s approach is also well

suited for time-varying persistent unobserved heterogeneity, but we are going to

focus on permanent unobserved heterogeneity.

Using again the Bayes’ Rule (and the law of iterated expectations), the CCPs

can be expressed as:

Pr(j|xit, k) =
Pr(j, k|xit)
Pr(k|xit)

=
E[1{dit = j}1{kit = k}|xit]

E[1{kit = k}|xit]

=
E [1{dit = j}E[1{kit = k}|di, Xi]|xit]

E [E[1{kit = k}|di, Xi]|xit]

=
E[1{dit = j}$(k|di, Xi;θ,π)|xit]

E[$(k|di, Xi;θ,π)|xit]
. (42)

The Arcidiacono and Miller (2011) approach expands the E step of the EM al-

gorithm to also update the CCPs computing the sample analog of the above

expression using the updated $(k|di, Xi;θ
(m),π(m)).

B. Competitive equilibrium models and aggregate shocks

The extension of CCP estimation to competitive equilibrium models under this

setting is straightforward in a world in which there are no aggregate shocks. As

individuals are price-takers, aggregate equilibrium conditions in the baseline econ-

omy are just treated as nuisance (and non-fundamental) parameters of the model,

and its estimation is often enriched with aggregate data or individual pay-off data,

like wages (e.g. see Traiberman, 2018, for a recent example).

However, this becomes more complicated in the presence of aggregate shocks.

To the best of my knowledge, only Altuğ and Miller (1998) and Llull (2022) deal

with CCP estimation in the presence of aggregate shocks. The key difficulty for

implementing this approach is that one needs to integrate over future counter-

factual paths for the aggregate conditions, for which CCPs cannot be (directly)

recovered from the data.

To be more explicit, expand the value functions above to account for an aggre-

gate random variable rt:

vjt(xt, rt) = ujt(xt, rt) + β

∫ ∫
Vt+1(xt+1, rt+1)dFx(xt+1|xt, j)dFr(rt+1|rt,Ωt).

(43)

15

where Ωt is the relevant information at time t that is useful to predict rt+1. The

CCP representation would imply replacing Vt+1(xt+1, rt+1) = vkt+1(xt+1, rt+1) +

ψk(pt+1(xt+1, rt+1)) for any possible value of (xt+1, rt+1), factual or counterfactual.

For example, consider a labor market in which the wage rate can be high or low.

In the data, we observe a given sequence of wages for a given time period (say, e.g.

H,H,L). However, we would need to compute the CCPs for any possible sequence

of wages (i.e., H,H,H; L,H,H; H,L,H; and so on).

The solutions to this problem used in Altuğ and Miller (1998) and Llull (2022)

share some similarities and also have important differences. In Altuğ and Miller

(1998), the discrete choice problem is associated to a continuous choice on con-

sumption. Armed with consumption data, they can use, say, rich households

observed in bad times as good counterfactuals for poor households had they lived

in good times. In a more standard dynamic discrete choice environment, Llull

(2022) exploits the stationarity of his model besides the aggregate conditions.

This allows him to use calendar time as a sufficient statistic for baseline aggregate

conditions. Combined with wage data, this allows him to recover estimates of

skill prices rt in each of the years in the sample. Having estimated them, he uses,

say, good years as counterfactuals for bad years had they been good. In the next

section, we review Llull (2022) in detail as the application for this chapter.

V. Application: Llull (2020)

See the paper.

16

	I Introduction
	II Conditional choice probability (CCP) representation
	A Models requiring only one-period-ahead choice probabilities
	The Rust example
	General representation

	B Finite dependence
	Occupational choice example
	General representation

	C Infinite-horizon stationary settings

	III Estimation methods
	A CCPs and transition functions
	B Estimating the structural parameters
	C Forward simulation methods
	D Aguirregabiria and Mira's iterative approach
	E Results in the Rust example

	IV Extensions: unobserved heterogeneity and competitive equilibrium models
	A Unobserved heterogeneity
	The expectation-maximization (EM) algorithm.
	Arcidiacono and Miller's approach.

	B Competitive equilibrium models and aggregate shocks

	V Application: Llull (2020)

