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I. Introduction

Many economics problems describe the behavior of forward-looking agents mak-

ing discrete choices taking into account how their decisions today affect tomorrow’s

outcomes. The seminal papers of Miller (1984), Wolpin (1984), Pakes (1986), and

Rust (1987) show that estimating these dynamic discrete choice models is both fea-

sible and important to answer key economic questions. Several examples include:

education and career path decisions, migration, machine replacements, smoking,

marriage, fertility, social interactions, patenting a product, entry/stay/exit from

a product market,... In this part of the course, we model individual behavior of

forward-looking individuals facing sequential random utility choice problems by

means of a stochastic dynamic programming (DP) problems.

II. General Framework

A. Model primitives and decision problem

Time is discrete and indexed by t = 0, 1, ..., T (with T ≤ ∞). Every period t,

each individual chooses among J mutually exclusive alternatives:

dt ≡ {j : j ∈ D = {1, 2, ..., J}}. (1)

For each decision j, we define an indicator variable that equals one if the action is

taken at time t, and zero otherwise, djt ≡ 1{dt = j}, such that
∑J

j=1 djt = 1. In-

dividual’s payoff in period t depends on the vector of state variables, st ≡ {xt, εt},
where xt is a vector state variables that are observed by the econometrician

(which might include the time-varying and/or time-invariant variables, agent-

specific and/or aggregate variables, the time index,...), and εt ≡ (ε1t, ..., εJt)
′ is

observed by the individual, but unobserved by the econometrician. State variables

evolve following a choice-specific Markovian process:

st+1 ∼ F (st+1|st, dt). (2)
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Individual’s intertemporal payoff function is:

Et

[
T−t∑
l=0

βlU(st+l, dt+l)

]
, (3)

where U(., .) is the one-period payoff, β ∈ (0, 1) is the discount factor, and Et is

an expectation taken with respect to individual’s beliefs about future outcomes

given information available in period t (which in general includes st and dt). Given

these payoffs and beliefs, we write the optimal decision at period t, as:

d∗t (st) = arg max
dt∈D

Et

[
T−t∑
l=0

βlU(st+l, dt+l)

]
, (4)

and we define d∗jt ≡ 1{d∗t (st) = j}. The primitives of the model {U, F, β} are

known by the econometrician up to a parameter vector θ.

B. Baseline assumptions

There is not a “general class” of dynamic discrete choice models. Here we

consider a set of assumptions that define somehow a class of models that we refer

to as the Rust framework, following the terminology in Aguirregabiria and Mira

(2010). These models are inspired by Rust (1987), which we use as a motivational

example below. We consider the following assumptions.

Assumption 1 (additive separability) The one-period utility function is ad-

ditively separable between the observable and the unobservable components. This is:

U(dt,xt, εt) = u(dt,xt) + εt(dt), (5)

where εt(dt) ≡
∑

j∈D djtεjt. We define ujt(xt) such that u(dt,xt) ≡
∑

j∈D djtujt(xt).

Assumption 2 (iid unobservables) Unobserved state variables εt are indepen-

dently and identically distributed across agents and over time given xt, with a cdf

Fε(εt) which has finite first moments and is continuous and twice differentiable.

Assumption 3 (conditional independence of future x) Conditional on cur-

rent decision and observable state variables, next period observable variables do not

depend on current εt:

Fx(xt+1|dt,xt, εt) = Fx(xt+1|dt,xt). (6)

Note that Assumptions 2 and 3 together imply conditional independence, this is:

F (xt+1, εt+1|dt,xt, εt) = Fx(xt+1|dt,xt)Fε(εt+1). (7)
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Assumption 4 (conditional logit) Unobservables {εjt : j ∈ D} are indepen-

dent across alternatives and type-I extreme value distributed.

Later on in the chapter, we introduce some examples of papers estimating models

that depart from these assumptions, and we discuss the implications of doing so.

C. Value functions, conditional choice probabilities, and log-likelihood

Let Vt(xt) denote the ex-ante value function in period t, this is, the discounted

sum of expected payoffs just before εt is revealed conditional on behaving accord-

ing to the optimal decision rule:

Vt(xt) ≡ Et−1

[
T−t∑
l=0

∑
j∈D

βld∗jt+l(ujt+l(xt+l) + εjt+l)

∣∣∣∣xt

]
(8)

(note the role of subscripting of Et−1 and the conditioning on xt to define the ex-

pectation just before εt is revealed). Appealing to Bellman’s optimality principle,

and given conditional independence we can write:

Vt(xt) = Et−1

[∑
j∈D

d∗jt

(
ujt(xt) + εjt + β

∫
Vt+1(xt+1)dFx(xt+1|xt, d

∗
t )

) ∣∣∣∣xt

]

=
∑
j∈D

∫
d∗jt

(
ujt(xt) + εjt + β

∫
Vt+1(xt+1)dF (xt+1|xt, d

∗
t )

)
dFε(εt), (9)

where both integrals are multiple-dimensional. This expression is sometimes called

the Emax, as it is the expectation of the solution of an optimization problem.

Define the conditional value function vjt(xt) as the payoff of option j without εjt:

vjt(xt) ≡ ujt(xt) + β

∫
Vt+1(xt+1)dFx(xt+1|xt, j). (10)

The individual chooses j in period t if and only if:

vjt(xt) + εjt ≥ vkt(xt) + εkt ∀k 6= j, (11)

exactly as in the random utility model described in chapter 3 of the Microecono-

metrics course. In this case, given assumption 4, the conditional choice probabili-

ties (CCP) pjt(xt) are described by a conditional logit:

pjt(xt) ≡ E[d∗jt|xt] =
evjt(xt)∑

h∈D e
vht(xt)

. (12)

To compute the CCPs, we need the conditional value functions, vjt(x). In general,

they do not have a closed form solution. We need to recover them solving the
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model for every parameter evaluation, or through a CCP estimator, suggested by

Hotz and Miller (1993), discussed in Chapter 2. The type-I extreme value assump-

tion is very convenient because it allows to write the Emax as a function of vjt(xt):

Vt+1(x) = ln
∑
j∈D

exp{vjt+1(x)}+ γ, (13)

where γ is the Euler’s constant.1 Plugging this expression into Equation (10) yields:

vjt(xt) = ujt(xt) + β

∫
ln

(∑
h∈D

exp{vht+1(x)}

)
dFx(xt+1|xt, j) + βγ, (14)

which describes a natural backwards induction (finite horizon) or fixed point (in-

finite horizon) algorithm to find {vjt(xt)}t=1,...,T
j∈D . If we had another distribution

(e.g. normal distribution), the multiple-dimensional integral embedded in the

Emax should be computed numerically.

In order to write the likelihood function for our data (or the corresponding

GMM estimation problem), we need to recover the conditional value function.

A full information maximum likelihood estimator for a sample that includes de-

cisions and state variables for i = 1, ..., N individuals observed over Ti periods,

{dit,xit}t=1,2,...,Ti

i=1,...,N is provided by the following likelihood function:

LN(θ) =
N∑
i=1

ln Pr(di1, di2, ..., diTi
, xi1,xi2, ...,xiTi

;θ) ≡
N∑
i=1

`i(θ). (15)

Given the previous assumptions, this probability can be factorized as:

`i(θ) =

Ti∑
t=1

ln Pr(dit|xit;θ) +

Ti∑
t=2

ln Pr(xit|xit−1, dit−1;θ) + ln Pr(xi1;θ). (16)

The second term is Fx(xit|xit−1, dit−1), whose parameters need to be estimated.

The third term is the initial condition, which under current assumptions can be

dismissed. The first term is the sum of CCPs, given by Equation (12). The

conditional independence assumption is crucial for this factorization, because it

establishes that xt is a sufficient statistic for the previous sequence of decisions,

and, hence, we can remove the dependence of CCPs on dt−1, ..., d1t.

III. Motivational Example: Rust’s Engine Replacement Model

Rust (1987) presents a discrete choice model of optimal engine replacement. The

paper describes the behavior of Harold Zurcher, superintendent of maintenance

1 As the Euler’s constant appears additively in the utility associated to each of the alterna-
tives, it is irrelevant for the maximization of utility, and, hence, we omit it hereinafter.
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at the Madison Metropolitan Bus Company (Madison, Wisconsin). The objective

of the paper is to test whether the behavior of Harold Zurcher coincides with that

described in a regenerative optimal stopping model. The interest of the paper is

not in the Harold per se, but as a general test of this way of modeling replacement

of investment. It is one of the first dynamic discrete choice structural models ever

estimated, and introduced a nested fixed point algorithm for estimation.

Every month t, Harold has to decide whether to replace the engine (of each

bus i) or not. Hence, the decision variable is binary:

dt =

{
1 if replaces

0 if keeps.
(17)

Harold solves an infinite horizon problem (T =∞). Replacing implies a replace-

ment cost, but a lower maintenance cost, and not replacing saves the cost of

replacement at the expense of a larger maintenance cost. Hence, the utilities are:

U(dt, xt, εt) =

{
−θR − θM0 + ε1t if dt = 1

−θMxt + ε0t if dt = 0,
(18)

where θR is the fixed replacement cost (the price of the new engine net of scrap

value of the old one), and θM is the operative cost of an engine with mileage

xt. The other state variables (unobserved by the econometrician) εt = (ε0t, ε1t)
′

satisfy the baseline assumptions described above. The interpretation of these

variables is that of unobserved shocks that affect the maintenance cost of the old

and new engine respectively other that mileage (a component failure that needs

to be repaired vs a satisfactory report by the driver, and shortage of new engines

to replace the old one or all bays in the shop are occupied vs there are engines

and bays available,...).

The support of x is discrete, with a choice-specific transition matrix (xt+1 takes a

value of zero with probability one if the engine is replaced, and one of the possible

values X, with probabilities given by F 0
xt+1,xt

:

F 0
xt+1,xt

=



ϕ0 ϕ1 1− ϕ0 − ϕ1 0 0 . . . 0 0 0
0 ϕ0 ϕ1 1− ϕ0 − ϕ1 0 . . . 0 0 0
0 0 ϕ0 ϕ1 1− ϕ0 − ϕ1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . ϕ0 ϕ1 1− ϕ0 − ϕ1

0 0 0 0 0 . . . 0 ϕ0 1− ϕ0

0 0 0 0 0 . . . 0 0 1

 .

(19)

Given infinite horizon, Equation (14) describes vj(xt) as a fixed point of the
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system of equations given by:

vj(xt) = uj(xt) + β
∑
x∈X

ln

(∑
h∈D

exp{vh(x)}

)
F j
x,xt

+ βγ. (20)

provided that conditional value functions are stationary, vjt(x) = vj(x) ∀t. This

is a system of J equations and J unknowns for each x ∈ X.

IV. Estimation using full solution techniques: Rust’s nested fixed
point algorithm

Given the factorization in Equation (16), it is convenient to divide the param-

eter vector in two subsets of parameters: θ = (θ′U ,θ
′
x)′, where θx includes the

parameters determining the law of motion of xt (in our current example, F j
l,h for

j = 1, ..., J and l, h = 1, ...,M), and θU includes the remaining parameters of the

model. This division is convenient because it allows a two-step estimation:

θ̂x = arg max
θx

N∑
i=1

Ti∑
t=2

ln Pr(xit|xit−1, dit−1;θx), (21)

and then:

θ̂U = arg max
θU

N∑
i=1

Ti∑
t=1

ln Pr(dit|xit;θU , θ̂x). (22)

We may add a third step in which we do a single iteration for the full likeli-

hood optimization (Newton-Raphson or BHHH, discussed below) using (θ̂
′
U , θ̂

′
x)′

as starting values. This third step provides an estimator that is asymptotically

equivalent to the full information ML estimator (hence consistent and efficient).

On top of separate estimation of the two sets of parameters, Rust provides an

iterative algorithm that can be applied both to the partial and to the full likelihood

maximization. The nested algorithm has an inner loop that solves the dynamic

programming problem for every evaluation of θ with the fixed point problem

described above, and an outer algorithm that is a BHHH optimization routine

(Berndt, Hall, Hall, Hausman, 1974) that iterates over θ̂ (or θ̂U) to maximize the

log-likelihood of the sample.

The BHHH optimization routine is similar to Newton-Raphson, except that it

avoids computing the Hessian, which in this case is computationally demanding.

In particular, the algorithm updates parameter guesses as follows:

θm+1 = θm −

(
N∑
i=1

Ti∑
t=1

∂`it(θ
m)

∂θ

∂`it(θ
m)

∂θ′

)−1( N∑
i=1

Ti∑
t=1

∂`it(θ
m)

∂θ′

)
. (23)
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Put differently, the routine uses the information matrix equality to approximate

the Hessian (it is an approximation because the only holds for θ0, not for any θ).

As noted above, we compute, in a first stage, the transition probabilities for the

observable state vector are estimated. In the Rust example, these parameters are:

ϕ0, ϕ1, and ϕ2, introduced in Equation (19). Using data from Rust (1987), we

obtain the following estimates:

Parameter Group 1, 2, 3 Group 4 Group 1, 2, 3, 4

ϕ0 0.29 0.40 0.33

(0.01) (0.01) (0.01)

ϕ1 0.70 0.59 0.66

(0.01) (0.01) (0.01)

ϕ2 0.01 0.01 0.01

(0.00) (0.00) (0.00)

Courtesy of José Garćıa-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro Rug-
gieri, who replicated Rust’s paper for the replication exercise in the Microeconometrics IDEA
PhD course in Fall 2014.

To estimate the cost parameters, θR and θM , we fix β = 0.99. The results

obtained are:

Method Parameter Group 1, 2, 3 Group 4 Group 1, 2, 3, 4

NFXP θR 11.87 10.12 9.75

(1.95) (1.36) (0.89)

θM 5.02 1.18 1.37

(1.40) (0.28) (0.24)

Courtesy of José Garćıa-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro Rug-
gieri, who replicated Rust’s paper for the replication exercise in the Microeconometrics IDEA
PhD course in Fall 2014.

V. Extensions: Unobserved Heterogeneity and Equilibrium

A. Unobserved permanent heterogeneity

The first assumption that we relax with respect to our baseline framework is

the IID assumption. Assuming that unobservable characteristics are not corre-

lated over time might be restrictive in many contexts. For instance, in a human

capital model, there are some unobserved characteristics (ability) that are innate

(and hence permanent) to individuals. In this section we allow for persistence of

unobservables in the form of permanent unobserved heterogeneity. We use the

paper by Keane and Wolpin (1997) as a motivational example.
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Keane and Wolpin model the career decisions of young U.S. men. They propose

a dynamic model of human capital (education and experience) accumulation. Dy-

namics in this model are important because human capital investment decisions

are forward-looking in its nature. The (simplified version of the) setup of the

model is as follows. Individuals decide every year (from age 16 upon retirement)

whether to stay home (dt = 0), work in blue collar (dt = 1), white collar (dt = 2)

or military sectors (dt = 3), or attend school (dt = 4). Observable state variables,

zt ≡ (et,x
′
t)
′, include years of education et and sector-specific work experience

xt ≡ (x1t, x2t, x3t)
′. There are two vectors of unobserved variables: εt, which is an

i.i.d. idiosyncratic shock with εt ∼ N (0,Σ), and ω, which is an individual-specific

time-invariant component with a discrete support. Utility is given by:

U(dt, zt,ω, εt) =


ω0 + ε0t if dt = 0

rj exp{ωj + θ1jet + θ2jxjt + θ3jx
2
jt + εjt} if dt = 1, 2, 3

ω4 + θ4 1{et ≥ 12}+ θ5 1{et ≥ 16}+ ε4t if dt = 4.

(24)

The opportunity cost of investing in human capital through school attainment is

the value of forgone earnings and work experience, or the forgone utility of staying

home; working also has an investment value since it increases occupation-specific

skills and, hence, future earnings. Career paths are additionally determined by

comparative advantage embedded in endowments at age 16, both because of the

initial stock of years of education, and because (as discussed below), the distribu-

tion of unobserved heterogeneity is conditional on initial education.

This setup departs from the Rust model in many ways. First, the transition

probabilities for observed state variables are deterministic: if the individual goes

to school, her education increases by one year and her experience remains un-

changed; if she works in occupation j, her experience in that occupation increases

by one year and her education and experience in other occupations stay constant;

and if she stays at home, none of the observable state variables change. Second,

the assumptions on the unobservable state variables are relaxed. We do not have

additive separability anymore, as the unobservable state variable enters multi-

plicative in wage equations. The type-I extreme value assumption is changed by

normally distributed errors correlated across alternatives. And, third, the con-

ditional independence assumption is relaxed by the introduction of a permanent

component of the unobservable state variables, ω, that introduces persistence in

unobservable state variables.

The latter is the most important departure from Rust’s framework. Because of

the persistence in unobservables, zt is no longer a sufficient statistic for dt because
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lagged decisions dt−1, ..., d1 contain information about ω. However, conditional on

ω, the transitory components εit still satisfy the CI assumption. Therefore, the

likelihood conditional on unobserved heterogeneity can still be factorized as above.

For estimation, we optimize the integrated likelihood, in the same spirit as in the

duration analysis or random parameters logit: we write the likelihood conditional

on ω, and then, we integrate over the distribution of ω. We assume a discrete

support for ω given by Ω ≡ {ωk : k = 1, 2, ..., K}. Hence, the integral over the

distribution of ω is a sum:

LN(θ) =
N∑
i=1

ln

{
K∑
k=1

Pr(di1, di2, ..., diTi
, zi1, zi2, ...,ziTi

|ωk;θ)πk|zi1

}
, (25)

where πk|zi1 ≡ Pr(ωi = ωk|zi1) is the probability that individual i is of type k

(i.e. the probability that ωi is equal to ωk) conditional on the initial vector of

state variables. For instance, if we think of ω as ability, we might think that the

probability of being of a “high ability” type is larger for individuals that at age

16 completed 10 years of education than for those who dropped out. The points

of support and the type probabilities, {ωk, πk|z1 : k = 1, 2, ..., K; z1 ∈ Z1}, are

parameters to be estimated.

Note that the computation burden is substantially larger than in the equiva-

lent situation without unobserved heterogeneity. First, because we need to solve

the DP problem for each type of individual in every evaluation. Second, the

partial/two-step likelihood approach used before is not usable anymore because

the history of decisions by an individual carries information about its unobserved

heterogeneity beyond the current state vector (zt).

Also note that the unobserved heterogeneity poses an initial conditions prob-

lem, as the likelihood is expressed conditional on zi1, which is correlated with

permanent unobserved components. This problem is avoided if the DP problem

is finite horizon and either we observe (left-)complete histories or a single value

of z at t = 1 shared by all individuals.

B. Estimation of competitive equilibrium models

Lee (2005) and Lee and Wolpin (2006) extend the Keane and Wolpin framework

to allow the price of skills, rj from wage equations in (24), to be endogenously

determined in equilibrium. Llull (2018) uses a similar approach, as we discuss in

the application below. These papers have clear connections with general equilib-

rium heterogeneous agents models in macroeconomics. In this framework, rj is,

therefore, an equilibrium object, as opposed to a parameter to estimate as before.
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Hence, rj is now rjt. The model is expanded with an aggregate production func-

tion that determines the labor demand. Individual decisions (and hence Emaxes

and CCPs) are a function of {rjt : j = 1, ..., J}, which themselves are functions of

individual decisions through market clearing conditions.

The endogeneization of skill prices complicates the situation in many aspects.

First, the state space is augmented with skill prices, and with relevant information

to predict their evolution. Second, finding prices that clear the market entails a

fixed point algorithm, that increases the computational burden. Third, individ-

uals need to forecast future skill prices. If there is aggregate uncertainty in the

economy, individuals would need the entire distribution of state variables in the

economy to make the best forecast of future skill prices. As this is unfeasible,

we have to use an approximation to rational expectations finding quasi-sufficient

statistics to predict future skill prices. In the case of Lee and Wolpin, they use

an approximation which is a VAR in the differences in skill prices and in the ag-

gregate shock. The coefficients of this rule are unknown implicit functions of the

fundamental parameters of the model. Their estimation entails an additional fixed

point algorithm in which a set of coefficients is used to solve the DP problem, then

the U.S. economy is simulated, and expectation rules are then re-estimated with

simulated aggregate data; this estimate serves as input for the next iteration, until

reaching convergence. And fourth, identification of equilibrium prices through a

likelihood estimation requires a representative sample for the whole population.

Because of unobserved heterogeneity, we need left-complete working histories for

individuals. Longitudinal data of this kind is not easy to find. Additionally, the

problem is non-stationary (e.g. the evolution of the different aggregate exogenous

variables, that is taken from the data, and the aggregate shock, that is an AR(1)

in differences). As a result, identification of equilibrium skill prices requires left-

complete histories of a sample that is representative of all cohorts alive during

the estimation period, because they are exposed to different sequences of aggre-

gate shocks, which are not observed. Because such a dataset does not exist, this

model is estimated with a combination of different data sources, using a Simulated

Minimum Distance estimator.

C. Using randomized experimental data to validate structural models

One of the crucial aspects for the credibility of the estimation of structural

models is the validation. In particular, it is important to show that the model

fits the most relevant features of the data (either in-sample or —ideally— out of

sample). Todd and Wolpin (2006) propose a very nice validation strategy. The
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goal of their paper is to estimate a model of child schooling and fertility in order

to evaluate alternative subsidies to school attendance in rural Mexico.

A very ambitious assistance program called PROGRESA was introduced in

Mexico (and later exported to many Latin American and Asian countries) to

foster children’s (mainly girls’) school attendance. At the beginning of the imple-

mentation, the program was randomly implemented in a subset of villages, and

data was gathered in treated and control villages to evaluate the effectiveness of

the program. The analysis of these experimental data has lead to many papers.

However, in such “experimental studies”, the analysis focuses always on the same

treatment (namely the given subsidy). The goal of Todd and Wolpin (2006) is to

use a structural model to be able to evaluate alternative subsidies other than the

ones that were actually given, and to predict the long-run effects of the subsidy.

The empirical strategy consists of estimating their model using only the data

from the control group (individuals from villages that did not receive the subsidy).

Then, once the model is estimated, they simulate the counterfactual behavior of

individuals had them received the subsidy, and compare it with the behavior of

individuals in the treatment group. If randomization was successful, treatment

and control households should belong to the same population, and the structural

behavioral model should be invariant across both groups.

Two important assumptions are made in this exercise. First, in order to identify

the impact of the subsidy (for which there is no variation in the control sample)

the authors rely on variation in child wages combined with some functional form

assumptions: they assume that a 1$ subsidy is equivalent to a 1$ change in the

wage of the child. And second, they assume that households in control villages

did not anticipate the subsidy (which was eventually extended to them later on).

VI. Application: Llull (2018)

See the paper.
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