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I. Introduction

Production functions are important elements in Economics. Specifically, they

are fundamental in Industrial Organization, and also have many application in

Labor Economics. They play a key role in: determining aggregate productiv-

ity and its dispersion (firm heterogeneity, wage inequality,...); miss-allocation of

resources; estimation of marginal costs, marginal productivity, and input prices;

skill-labor intensity and skill-biased technical change; learning-by-doing; technol-

ogy adoption and endogenous innovation;...

II. Firm-level estimation

The estimation of firm-specific production function has important applications

in Industrial Organization and in micro-founded Macroeconomics among other

fields. Applications include: the estimation of marginal costs, productivity, and

input prices; innovation and technology adoption decisions; firm dynamics; merg-

ers and acquisitions; the analysis of miss-allocation of resources; and many others.

A. Model setup: a simple Cobb-Douglas production framework

Let yit denote output of firm i at time t, and kit and lit the two inputs used in

production, namely capital and labor. Consider a simple Cobb-Douglas produc-

tion technology:

yit = ζitk
α
itl
β
it, (1)

where ζit is firm’s total factor productivity. Taking logs to this expression yields:

ln yit = α ln kit + β ln lit + νit + εit, (2)

where νit ≡ ln ζit is the productivity term, unobserved by the econometrician, and

εit is measurement error. This equation provides an example that even a linear

regression can be a structural model, if its parameters have an interpretation in

terms of the parameters of an economic model.
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The linear regression estimation of (2) entails one of the most classic examples

of endogeneity discussed in econometrics: the simultaneity bias. This bias arises

because the firm knows νit when deciding the quantities of inputs kit and lit to be

used in production. To illustrate it, consider the firm’s maximization problem:

max
kit,lit

ζitk
α
itl
β
it − ritkit − witlit, (3)

where rit and wit are input prices, which leads to the demands:{
wit = βζitk

α
itl
β−1
it

rit = αζitk
α−1
it lβit

⇒

l
1−α−β
it = ζit

β
wit

(
witα
ritβ

)α
k1−α−βit = ζit

α
rit

(
ritβ
witα

)β
.

(4)

Another source of bias is given by measurement error in the inputs (especially

capital), which leads to attenuation bias if the measurement error is classical. An

additional type of bias is the selection bias, because there are endogenous exits of

firms: survivor firms are not randomly chosen. For example, survivor firms may

have higher productivity and use larger amounts of labor and capital than exiting

firms. That is, if dit denotes an indicator variable that equals one if the firm is

operating, then E[νit|kit, lit, dit = 1] 6= 0.

B. Instrumental variables estimation

To deal with the simultaneity and measurement error biases, one of the classic

solutions is to use input prices as instruments. In particular, the demands in (4)

are functions of prices and productivity. In a competitive setting, in which firms

operate in different markets in a competitive way, there is variation in the input

prices they face, but this variation is exogenous to firm’s productivity. However,

this approach generates some tensions and difficulties. First, input prices may

not be observable. Second, if firms operate in non-competitive settings, input

prices may be affected by firm’s productivity (for example, more productive firms

being larger and being able to buy at cheaper prices). Third, in a competitive

setting, the presence of variation in prices rejects itself the constant parameter

model sinceβ = witlit
yit

is not constant in the data.

C. Dynamic panel data

An alternative approach is to consider νit = ηi + δt + υit, where υit is unknown

by the firm at the time of setting up demands. In this context, if 1) it is plausible

that υit is uncorrelated with inputs demands, 2) υit is i.i.d. over time, and 3)

there is within-firm over time variation in input demands, then a panel data fixed

effects (within groups) estimation would lead to consistent estimates of α and β.
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However, in most applications, these are restrictive assumptions. In many ap-

plications in practice, this estimator provides very small estimates of α and β.

There are at least two main reasons for that. First, while the presence of varia-

tion in inputs within firms over time and the absence of auto-correlation in the

productivity term may be plausible in agricultural firms in developing countries, it

is rather unlikely to hold in the manufacturing sector in developed countries. And

second, the attenuation bias induced by measurement error is exacerbated by the

within groups transformation, especially when there is little variation in inputs.

Many papers in the literature relax these assumptions using dynamic panel data

models. Strict exogeneity can be relaxed assuming dynamic demands:

kit = FK(kit−1, lit−1, νit) and lit = FL(kit−1, lit−1, νit). (5)

There are multiple reasons why the demand for capital or and labor are dynamic:

hiring and firing costs for labor, irreversibility of some capital investments, instal-

lation costs, time-to-build,.... If demands are dynamic, kit−j, lit−j, and Yit−j for

j ≥ 2 are valid instruments for the regression:

∆ ln yit = α∆ ln kit + β∆ ln lit + ∆δt + ∆υit, (6)

as long as υit is i.i.d over time. This assumption is again restrictive, but can be

tested (as in Arellano and Bond, 1991). In practice, this assumption is very often

rejected. Furthermore, the instruments are often weak (because of the strong

persistence in the demands), the estimation of the equation in first differences

eliminates the cross-sectional variation and exacerbates the measurement error

problem, and it often provides downward biased and imprecise estimates (Blundell

and Bond, 1998, 2000).

Blundell and Bond (2000) suggest to modify the model to include persistent

errors in the following way: νit = ρνit−1 + ηi + δt + υit. Under this assumption,

(ignoring the measurement error term) Equation (2) can be rewritten as:

ln yit = ρ ln yit−1 + α(ln kit − ρ ln kit−1) + β(ln lit − ρ ln lit−1) + ηi + δt + υit. (7)

The authors then suggest to use the estimation methods discussed in Blundell

and Bond (1998), which is based on the methods proposed by Arellano and Bond

(1991) and Arellano and Bover (1995) reviewed in the Microeconometrics course.

D. Control function approaches

Olley and Pakes (1996) and Levinshon and Petrin (2003) propose “control func-

tion approaches” as an alternative to finding instruments for lit and kit. Intuitively,
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they look for observable variables that can “control” for unobserved total factor

productivity. These control variables come from a model of firm behavior.

The Olley and Pakes (1996) considers the following modification of the model

presented above. The production structure is given by (2). The dynamic demands

are given by the following modification of (5):

iit = FK(kit, lit−1, νit, rit) and lit = FL(kit, lit−1, νit, rit), (8)

where iit denotes investment at time t, and rit is the vector of factor prices, in this

case, rit = (rit, wit)
′. The authors assume: i) FK(·) is invertible in νit; ii) no cross-

sectional variation in prices, rit = rt for all i; iii) νit follows a first order Markov

process; and iv) investment iit is chosen in period t, but it is not productive until

t + 1, when kit+1 = (1 − δ)kit + iit (where δ is the depreciation rate). They also

assume that labor is a perfectly flexible input, that is, lit−1 is not a state variable.

Following the discussion in Aguirregabiria (2019), we discuss the case in which the

latter assumption is relaxed, allowing for labor adjustment costs (this assumption

is innocuous in Olley and Pakes, 1996). This approach deals with the simultaneity

problem, and can be adjusted to also deal with the endogenous exit bias, which

happens to be important in practice (see Aguirregabiria, 2019).

Olley and Pakes proceed with two steps. In the first step, they estimate β using

a control function approach based on the first two assumptions above (invertibility

and no cross-sectional variation in prices). In particular, this step estimates:

ln yit = β ln lit + φt(lit−1, kit, iit) + εit, (9)

where φt(lit−1, kit, iit) ≡ α ln kit+F
−1
K (lit−1, kit, iit, rt), and where F−1K (lit−1, kit, iit, rit)

is the inverse of FK(·) with respect to νit. This equation can be estimated without

imposing any parametric assumption on FK(·), which yields to a semi-parametric

partially linear model. This model can be estimated using semi-parametric meth-

ods like kernel regressions, or approximating φt(·) by means of polynomial series

approximations, as in Olley and Pakes (1996). As we discuss below, Ackerberg,

Caves, and Fazer (2006) noted that, on top of invertibility and no cross-sectional

variation in prices, this step requires that there is enough variation in lit to identify

β after controlling for lit−1, kit, and iit.

The second step entails the estimation of α given the estimate β̂ obtained in

the first stage. To this end, we need the additional two assumptions (Markovian

nature of νit and the time-to-build assumption for capital). Since νit is Markovian:

νit = E[νit|νit−1] + ξit ≡ h(νit−1) + ξit, (10)
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where ξit is a mean-independent innovation and h(·) is some unknown function.

Given the definition of φt(lit−1, kit, iit) and the identity νit = F−1K (lit−1, kit, iit, rt):

φ̂it = α ln kit + h(νit−1) + ξit

= α ln kit + h(φ̂it−1 − α ln kit−1) + ξit, (11)

where φ̂it ≡ ln yit − β̂ ln lit. This model is again a partially linear model, as (9).

However, unlike in the case of (9), the argument of the h(·) function is not observ-

able, because it depends on the unknown parameter α. Olley and Pakes propose

a recursive version of the semiparametric method in the first step. In particular,

they start from a guess of α, namely α(0), and compute φ̂it−1 − α(0) ln kit−1. Given

this, they obtain a next guess α(1) as the coefficient of ln kit in the semi-parametric

regression (11). If the new guess equals the preceding one, the algorithm stops;

otherwise, it proceeds with a new iteration replacing α(0) by α(1), until reaching

convergence. Alternatively, one can similarly use a minimum distance estimator.

Levinshon and Petrin (2003) adjust the Olley-Pakes algorithm to account for

two important issues: i) investment can be responsive to more persistent shocks

in TFP; and ii) zero investment accounts are very present in many data-sets (at

iit = 0, corner solution, there is no invertibility between iit and νit). Instead of

the primary investment function to generate the control function, they use the

demand function for intermediate inputs. Consider the following version of the

(linearized) production function:

ln yit = α ln kit + β ln lit + γ lnmit + νit + εit, (12)

where mit denotes intermediate inputs (materials). The investment equation is

now replaced with the demand for materials:

mit = FM(lit−1, kit, νit, rit), (13)

assumed, again, to be invertible in νit (in this case, rit = (rit, wit, pit)
′, where

pit denotes the price/cost of materials). The assumptions of no cross-sectional

variation in prices, first order Markovian TFP, and time-to-build for capital are

still assumed to hold. In this case, the first step is analogous to that in Olley and

Pakes, except that investment is replaced by the demand for materials:

ln yit = β ln lit + ϕt(lit−1, kit,mit) + εit, (14)

where ϕt(lit, kit,mit) ≡ α ln kit + γ lnmit + F−1M (lit−1, kit,mit, rit), and where the

function F−1M (lit−1, kit,mit, rit) is the inverse of FM(·) with respect to νit.
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The second step is also analogous to Olley and Pakes:

φ̂it = α ln kit + γ lnmit + h(νit−1) + ξit

= α ln kit + γ lnmit + h(φ̂it−1 − α ln kit−1 − γ lnmit−1) + ξit. (15)

This second step, however, includes an important difference with respect to Olley

and Pakes: E[ξit lnmit] 6= 0 (it is zero for capital because of the time-to-build

assumption). In order to account for the subsequent endogeneity of mit they

propose to instrument by lagged values of mit in the spirit of Blundell and Bond

(see an important critique in Gandhi, Navarro, and Rivers, 2020).

Ackerberg, Caves, and Fazer (2015) provide an important critique (and a so-

lution) to the methods proposed by Olley and Pakes (1996) and Levinshon and

Petrin (2003). In the following lines, we discuss their critique focusing on the

Olley and Pakes case, but the extension to the Levinshon and Petrin framework

is trivial. Given the assumptions of invertibility and no cross-sectional variation

in prices, we can rewrite the labor demand as:

lit = FL(lit−1, kit, F
−1
K (lit−1, kit, iit, rt), rt) ≡ Gt(lit−1, kit, iit). (16)

Therefore, once lit−1, kit, and iit are non-parametrically controlled for in (9), there

should be no variation left to identify β. Therefore, in practice, either the model

is incorrectly specified, or β is identified spuriously.

These authors discuss alternative specifications in which the Olley and Pakes (or

Levinshon and Petrin) approach identifies the parameters of interest and provides

consistent estimates. The main requirement is some “exclusion restriction” for

the labor demand, that is, some variable that generates variation in lit when we

hold lit−1, kit, and iit fixed. In particular, they assume that:

iit = FK(kit, lit−1, νit, rit) and lit = FL(kit, lit−1, νit, wit), (17)

where the input prices wit and rit satisfy that, conditional on t, iit, kit, and lit−1,

i) wit has cross-sectional variation, that is, Var(wit|t, iit, kit, lit−1) > 0, and ii) wit

and rit are independently distributed. These assumptions are consistent with the

following economic assumptions: a) capital markets are perfectly competitive and

the price of capital is the same for every firm, i.e. rit = rt for all i (this assumption

is not strictly necessary, because rit does not enter the labor demand, but the

independence of wit and rit is harder to sustain otherwise); b) there are internal

labor markets such that the price of labor has cross-sectional variability; c) the

realization of the cost of labor occurs after the investment decisions take place,
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and, therefore, wit does not enter the investment function; and d) the idiosyncratic

labor costs are not serially correlated (so that lagged labor cost shocks are not

state variables in the optimal investment decision).

III. Aggregate production functions

Aggregate production functions are a central element for Macroeconomics and

for Labor Economics. They are fundamental to describe input demands in gen-

eral and partial equilibrium models, to identify technological shocks and total

factor productivity, and to describe the evolution of input prices (e.g. wages).

In this context, the focus is more often placed on the elasticities of substitution

across inputs and in the residuals, and the evolution of the technology parame-

ters. The construction/estimation of factor shares and depreciation rates is often

approached from a perspective of measurement/accounting.

Within the bulk of research that investigates (or implements) the estimation

of aggregate production functions, we can distinguish between those that exploit

general equilibrium conditions and those based on partial equilibrium. Estimation

within equilibrium frameworks is not particularly convoluted because the explicit

modeling of supply and demand explicitly deals with most of the potential endo-

geneity concerns. In this section, instead, we focus on the estimation of production

functions in partial equilibrium frameworks.

In the context of partial equilibrium, we can distinguish between approaches

that exploit cross-sectional (typically spatial) variation and those that are based

on time series (and, potentially, cross-input) variation. In the latter case, techno-

logical/TFP shocks are often specified in a Hicks-neutral way, which often facil-

itates the estimation of some of the parameters by least squares methods, as we

discuss below for the constant elasticity of substitution case.

There is a very extensive literature directly or indirectly focused on the estima-

tion of aggregate production functions that will not be reviewed here. Instead,

what we do is to use a few examples to illustrate some of the most common issues

faced by researchers estimating aggregate production functions. The application

in Section IV below provides an additional example.

A. Elasticities of substitution: nested constant elasticity of substitution

One of the most convenient ways to estimate elasticities of substitution across

inputs (or allow for imperfect substitutability across them) is by means of nested

constant elasticity of substitution (CES) production functions. The two main

advantages of these production functions are: i) they exhibit a log-linear relation
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between relative prices and relative inputs, and ii) the elasticity of substitution

between two inputs inside one nest can be estimated without information on the

inputs or parameters in the nests that lie above the nest of interest.

Consider the following production function, based on the papers by Card and

Lemieux (2001), Borjas (2003), and Ottaviano and Peri (2012):

Yt = AtK
α
t L

1−α
t , (18)

with:

Lt ≡

[∑
i

θitL
ρ
it

] 1
ρ

, Lit ≡

[∑
j

γijL
η
ijt

] 1
η

, and Lijt ≡ [λLφijNt + (1− λ)LφijMt]
1
φ ,

(19)

where i indexes education groups, j indexes experience (age) groups, andN andM

denote, respectively, natives and immigrants. Card and Lemieux (2001) estimates

this production function (without the lowest level) to account for the importance

of imperfect substitutability across cohorts in explaining the increasing wage in-

equality. Borjas (2003) and Ottaviano and Peri (2012) estimate versions of this

production function using data from the U.S. Census in order to simulate the

effect of immigration on wages in each education-experience cell. Borjas (2003)

ignores the lowest layer, and Ottaviano and Peri (2012) estimate different ver-

sions with different nesting orders. With so few periods, the value of α is often

assumed out (e.g., to be 0.3). Therefore, the parameters left to be estimated are

those associated with the elasticities of substitution across inputs, φ, η, and ρ.

The estimation of nested CES production functions is often based on the first

order conditions of the (aggregate competitive) firm’s optimization problem (that

is, wages equal marginal product), and it is implemented sequentially. As noted

above, the relative prices (wages) of a pair of inputs included within the same

nest does not depend on the demands of inputs in upper levels. In this produc-

tion function, the relative wages of natives and immigrants with education i and

experience j is:

ln
wijMt

wijNt
= ln

∂Yt/∂LijMt

∂Yt/∂LijNt

= ln

(
∂Yt/∂Lijt
∂Yt/∂Lijt

× ∂Lijt/∂LijMt

∂Lijt/∂LijNt

)
= ln

1− λ
λ

+ (φ− 1) ln
LijMt

LijNt
. (20)

Note that this expression is exact, given that wages and labor inputs are observed
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(and the only unobservable of the production function, At, cancels out in the first

term of the second line of the expression). Adding a measurement error in relative

wages to (20), λ and φ is obtained from a least squares estimation.

Having identified λ and φ in the first stage, the labor inputs Lijt can be con-

structed. In order to identify the parameters in the following nesting level, η and

γij, one could proceed analogously, deriving the equivalent expression for every

pair of experience groups. Equivalently, these parameters can be estimated in

levels, using fixed effects to capture the common terms that would cancel in the

relative wage expressions.1 The wage in cell ijt is given by:

lnwijt = ln

(
∂Yt
∂Lt
× ∂Lt
∂Lit

× ∂Lit
∂Lijt

)
= κt + πit + ln γij + (η − 1) lnLijt. (21)

Taking into account the potential measurement error in the estimation of wages

in cell ijt, the above expression can be trivially estimated by least squares in-

cluding education-time and education-experience fixed effects (dummies). Given

these, η is identified from the coefficient on the labor input variable, and γij is

identified from the coefficients of the education-experience dummies (up to some

normalizations, which usually set
∑

j γij = 1 for every education group i).

Once the second step is completed with estimates of γij and η, the labor input

in the next nesting level, Lit, can be computed. Then, the third step proceeds

analogously to estimate ρ and θit, subject to some normalization on θit (given that

fixed effects would absorb all the available degrees of freedom):

lnwit = κt + ln θit + (ρ− 1) lnLit. (22)

Borjas (2003) specifies θit as education group-specific time trends.

In order to account for potential model specification error, potentially correlated

with the labor inputs, Borjas (2003) and Ottaviano and Peri (2012) also estimate

(21) and (22) using the stock of immigrants in each cell as an instrument for the

labor inputs. In this case, the results with and without instrumentation are very

similar, which could be interpreted as evidence that the need for instrumentation

in this context is limited.

B. The race between technology and skills

Another common application of aggregate production functions in Labor Eco-

nomics and Macroeconomics is the use of the estimated parameters to account for

1 The comparison between the estimation in levels or in terms of relative wages is analogous
to the estimation of fixed effects models in first differences versus with the standard within-
groups estimation.
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the determinants of the increasing wage inequality. Acemoglu and Autor (2011)

describe the “canonical model” of wage inequality as follows. Consider two skills,

Ht (for high) and Lt (for low). Output is produced with the following technology:

Yt = (αLtL
ρ + αHtH

ρ)
1
ρ . (23)

As noted above, relative wages are given by:

ln
wH
wL

= ρ ln

(
αHt
αLt

)
+ (ρ− 1) ln

Ht

Lt
. (24)

Note that we indexed αLt and αHt by t to capture technological progress. This

expression describes what Tinbergen described as the “race between technology

and skills”. Intuitively, the relative wages of high and low skilled workers decrease

with the increase in the relative supply of high skilled workers (ρ is typically a

number between zero and one provided that Lt and Ht are, potentially imperfect,

substitutes) and increase if there is skill-biased technical change (αHt/αLt grows).

The seminal work by Katz and Murphy (1992) estimate this regression by OLS,

assuming that the first term is well captured by a time trend. Note that this

assumption is crucial: if αHt
αLt

is, instead, assumed to be a random variable (included

in the error term), it would be correlated with Ht
Lt

, which would lead to biased

estimates of ρ. In this case, the nature of the biases would be similar to those

described in Section II. However, the time series nature of the data limits the use

of some of the approaches described there. In practice, most papers exploiting

national-level time series variation tend to ignore these concerns. Alternatively,

approaches that exploit spatial variation, described in Section III.E below, rely

on instrumental variable approaches.

This simple model fits the data quite well, at least within sample, until mid-

1990s, after which over-predicts the increase in the college-high school wage gap.

If the model is enriched to account for non-linear trends (linear spline, quadratic

trend, cubic trend, etc.), the model fits the data well for the entire period, but

all trends suggest that the relative demand for college workers decelerated in the

1990s, which seems counter to the common perception of how the technological

progress occurred in this period. Other papers like Card and Lemieux (2001) or

Jeong, Kim, and Manovskii (2015) expanded this model to account for different

groups of workers. Card and Lemieux (2001) estimate a nested CES production

function like the one discussed below showing that the imperfect substitutability

between young and old workers within an education group and the changes in the

cohort sizes can explain a part of the discrepancy. Jeong, Kim, and Manovskii
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(2015) depart from the college-high school classification of skills to distinguish be-

tween labor and experience as separate skill inputs. Their framework is useful to

illustrate the use of alternative approaches to the linear regression in (24). We re-

view these methods in Section IV, where we review Albert, Glitz, and Llull (2020),

who estimate a different production function with similar non-linear methods.

C. Capital-labor substitution and biased technical change

The capital-labor elasticity of substitution is a very important parameter in eco-

nomics. Many papers assume that it is one (Cobb-Douglas), which implies that

the technological progress is Hicks-neutral. Other papers try to test whether it is

one or not, making assumptions about the particular structure of the technolog-

ical progress. Antràs (2004) show that, indeed, in a context of relatively stable

factor shares, the assumption of factor neutral technical progress biases the results

towards Cobb-Douglas. Diamond, McFadden, and Rodŕıguez (1978) argue that

this elasticity and biased technical change cannot be simultaneously identified.

León-Ledesma, McAdam, and Willman (2010) provide a Monte-Carlo analysis

to asses under which conditions these two are well identified and robust. Consider

the following CES framework:

Yt = ζ (π(ΓKtKt)
ρ + (1− π)(ΓLtLt)

ρ)
1
ρ . (25)

The elasticity of substitution between capital and labor is given by 1/(1 − ρ),

the time-varying parameters ΓKt and ΓLt denote efficiency (and, its evolution,

technical progress), the parameter ζ is an efficiency parameter, and π ∈ [0, 1] is

the capital intensity. This production function embeds the Cobb-Douglas case

when ρ = 0, the Lenotieff case when ρ→∞, and the linear case when ρ→ 1.

Functional forms are often imposted to ΓKt and ΓLt in order to fix the non-

identification problem of Diamond, McFadden, and Rodŕıguez (1978). One of the

common cases is to impose (log-) linear trends ΓKt = e−γKt and ΓLt = e−γLt.

Furthermore, depending on the assumed relation between the two, one can be

imposing Hicks-neutral technical change (γK = γL), Solow-neutral (γL = 0),

Harrod-neutral (γK = 0), capital-augmenting (γK > γL > 0) or labor-augmenting

(γL > γK > 0).

The key difficulty for identification is very apparent if we derive an expression

for the capital-labor ratio (return to capital divided by aggregate wages, obtained

from the first order condition):

Capital-labor ratio =
π

1− π

(
ΓKtKt

ΓLtLt

)ρ
. (26)
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An increase in the capital-labor ratio can be equally explained by a capital-

augmenting technological progress if capital and labor are relative substitutes,

or a labor-augmenting technological progress if they are relative complements.

In terms of the estimation, there are three possible equations that can be used

(or combined) for the estimation: the two first order conditions and the production

function itself. Single equation approaches concentrate either on the production

function or on the ratio of the two first order conditions. In practice, assuming

factor neutral technical change, when factor shares are relatively stable, tends to

bias estimates towards Cobb-Douglas (Antràs, 2004), and the estimates from the

labor first order condition tend to find larger estimates than those based on the

capital’s first order condition (León-Ledesma, McAddam, and William, 2010).

In their Monte Carlo experiments, León-Ledesma, McAddam, and William

(2010) find that single equation methods does not perform very well in identi-

fying the capital-labor elasticity in the presence of biased technical change. The

worst one, in particular, is the capital first order condition, followed by the pro-

duction function in levels; the labor first order condition performs better in terms

of estimation biases. However, what they prove is that system methods, especially

the three equation one, perform much better in practice.

D. Latent factor models

Linking the discussion in the previous two sub-sections, Krusell, Ohanian, Ŕıos-

Rull, and Violante (2000) dig deeper in exploring what is behind the skill-biased

technical change. To do that, they assume the following production technology

that exhibits capital-skill complementarity:

Yt = ζtK
α
St

[
θLρt + (1− θ) (πHγ

t + (1− π)Kγ
Et)

ρ
γ

] 1−α
ρ
, (27)

where KSt and KEt are, respectively, structures and equipment capital, and Lt

and Ht denote low-skilled and high-skilled labor, in efficiency units: Lt ≡ ψLthLt

and Ht ≡ ψHthHt, where hLt and hHt are total hours worked, and ψLt and ψHt are

efficiency units. In this context, there is capital-skill complementarity provided

that ρ > γ. Given that they consider a closed economy, the output identity yields:

Yt = Ct + ISt +
IEt
qt
, (28)

where Ct denotes aggregate consumption, ISt and IEt denote investment in struc-

tures and equipment, and qt are the relative prices of equipment. The skill pre-

12



mium is given by:

ln
wHt
wLt
≈ C + (ρ− 1) ln

Ht

Lt
+ (ρ− γ)

1− π
π

(
KEt

Ht

)γ
, (29)

where C is a constant, and where we used the approximation ln(1 + x) ≈ x.

Comparing this equation to (24), we can see that what we interpreted above

as skill-biased technical change, depends on the relative growth of equipment

capital compared to labor, provided there is capital-skill complementarity (ρ >

γ). What these authors argue is that technical change decreased the prices of

equipment capital, which lead to an increase in the accumulation of equipment

and capital-skill complementarity made this technological progress skill biased. In

order to account for the more standard forms of skill-biased technical change, the

authors specified lnψit = ϕ0i + ϕi1t + εit for i ∈ {H,L}, where (εHt, εHt)
′ is i.i.d.

bivariate normal.

They estimate the model by means of a three-equation system, as discussed

above. The three equations consist of an equation for the labor share, another one

for the relative wage bills for high and low skilled labor, and a third equation that

equates the net rate of return of equipment and structures. Importantly, the last

equation depends on the relative prices of equipment, which are an unobserved

latent factor, and depreciation rates, which are additional latent factors in the

model. The estimation is carried through simulated pseudo-maximum likelihood,

taking into account the potential endogeneity of hours worked to technology and

efficiency shocks.

E. Spatial variation

When using spatial variation, endogeneity concerns (similar to those at the firm-

level) are more apparent. This is so because there are many more mechanisms

of adjustment than at the national single-market level. A typical paper estimat-

ing production functions at the local level would typically ignore capital (it is

rarely observed at the local level), and would consider heterogeneous labor in the

following way:

Yit = ζit

(∑
j

θijtL
ρ
ijt

) 1
ρ

, (30)

where j typically denotes different skill groups or industries. As it is the case in

any nested CES production function, the factor neutral term ζit cancels out (or it

is captured by location-time fixed effects) if one works with first order conditions

13



(local demands). However, the terms θijt are often considered random, as local

labor market-specific shocks to different industries or skill groups. In this context,

labor supply in market ij at time t is endogenous to θijt (simultaneity bias).

A common way to deal with endogeneity is the so-called “Bartik instrument”,

named after Bartik (1991). In particular, consider the wage equation obtained

from the first order condition on the previous production function:

lnwijt = (ρ− 1) lnLijt + δit + ln θijt, (31)

where δit denotes time dummies that capture all variation at the market-period

level. One of the many versions of the Bartik instrument for Lijt, denoted by

∆L̂ijt, is constructed as:

∆L̂ijt =
Lij0∑
j Lij0

∑
−i ∆Lijt, (32)

where ∆ indicates over-time differences, and
∑
−i denotes sum across all local

markets excluding the market i. This instrument is often used on the estimation

of (31) in first differences.

Many versions of this instrument have been used in practice. Intuitively, the

instrument exploits the industrial/skill composition of market i in some (ideally

far away) initial period t = 0 to leverage national level increases in the demand

of that particular labor input. Even though this instrument is widely used in

many different contexts (not only production function/labor demand estimation),

it is also often criticized. Goldsmith-Pinkham, Sorkin, and Swift (2019) provide

a deep discussion on when, why and how to use them.

IV. Application: Albert, Glitz, and Llull (2022)

See the paper.
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