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I. Hypothesis Testing

A statistical hypothesis is a hypothesis that is testable on the basis of observ-

ing a process that is modeled via a set of random variables. Consider a sample

(X1, ..., XN). What we want is to use this sample to see whether, with high

enough chances of success, we can reject this hypothesis about the population

that generated that sample.

The hypothesis that we are interested in testing is called the null hypothesis ,

and is denoted by H0. The null hypothesis describes a hypothetical data generat-

ing process. We call the alternative hypothesis , denoted by H1, or sometimes

Ha, to the set of possible alternative hypothetical data generating processes that

would be feasible if the null hypothesis was not true.

Statistical hypothesis testing is a method of statistical inference that com-

pares our sample to a hypothetical sample obtained from an idealized model. The

null hypothesis describes a specific statistical relationship between the two data

sets. The comparison is deemed statistically significant if the relationship be-

tween the observed and hypothetical data sets would be an unlikely realization of

the null hypothesis according to a threshold probability: the significance level .

For example:

H0 : Xi ∼ N (0, 1),

H1 : Xi ∼ N (µ, 1).
(1)

In this example, we assume that the distribution of Xi is N (·, 1), but we want to

test whether the mean of the data generating process is equal to µ or equal to 0.

In this example, our hypothesis is called a simple hypothesis , because we

completely specified fX (up parameter values). Alternatively, a composite hy-

pothesis is any hypothesis that does not specify the distribution completely. The
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key difference if we knew that a simple hypothesis is satisfied, we would know the

entire distribution of Xi, because one and only one distribution satisfies it; instead,

infinite distributions satisfy a composite hypothesis.

A test statistic C(X) is a statistic that summarizes the comparison between

the sample and the hypothetical sample obtained from the idealized model. A

statistical test is a procedure to discern whether or not the test statistic unlikely

have been generated by the model described by the null hypothesis. The critical

region or region of rejection, denoted byRC , is the set of values of the test statistic

for which the null hypothesis is rejected. The set of values of the test statistic for

which we fail to reject the null hypothesis is often called the acceptance region .

The critical value is the threshold value of C(X) delimiting the regions of

acceptance and rejection.

II. Type I and Type II Errors

As a combination of random variables, a test statistic is a random variable. As

such, with certain probability it can lead us to take wrong decisions. The following

table summarizes the possible situations:

H0

∖
C(X) C(X) ∈ RC C(X) ∈ Rc

C

true Type I error Ok

false Ok Type II error

Therefore, we define as Type I error the situation in which we reject a true null

hypothesis, and Type II error is the situation in which we do not reject the null

hypothesis despite even though it was false. The probability that Types I and II

errors occur are relevant to judge how good is the test. We define the size of a

test as α ≡ PH0(C(X) ∈ RC), the probability of rejecting a correct hypothesis,

i.e. the false positive rate.1 The power of a test is (1 − β) ≡ PH1(C(X) ∈ RC),

the probability of correctly rejecting the null hypothesis, i.e. the complement

of the false negative rate, β. In the above expressions, PHi
indicates that the

probabilities are computed using the cdf described by the hypothesis Hi. In a

parametric test, we can define π(θ) as the function that gives the power of the

test for each possible value of θ. This function is called the power function . If

θ0 is the parameter indicated in H0, then π(θ0) = α. Finally, the significance

level of a test is the upper bound imposed on the size of the test, that is, the value

1 For composite hypothesis, the size is the supremum of the probability of rejecting the null
hypothesis over all cases covered by the null hypothesis.
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chosen by the statistician that determines the maximum exposure to erroneously

rejecting H0 he/she is willing to accept.

Note that there exists a tension between size and power. In the classical method

of hypothesis testing, also known as Neyman-Pearson method, we give most of

the importance to minimize the size of the test. But note that if we pick a critical

value that takes α to zero, then the power of the test would be also zero.

For example, consider the following (one-sided) tests for the mean of a normal

distribution. Assume that Xi ∼ N (µ, σ2). The hypothesis we want to test is:

H0 : µ = µ0,

H1 : µ > µ0.
(2)

We consider two situations, depending on whether σ2 is known or not. If σ2 is

known, we know from Chapter 4 that:

X̄ − µ
σ/
√
N
∼ N (0, 1). (3)

Hence, define the following statistic:

C ≡ X̄ − µ0

σ/
√
N
. (4)

Under H0, µ = µ0, and, hence, C ∼
H0

N (0, 1), but under H1, C ∼ N (θ, 1),

where θ ≡
√
N(µ−µ0)

σ
, since C is a linear transformation of the statistic defined in

Equation (7).

Now we consider a critical region: Rα = {C > Cα}. As we know that µ ≥ µ0

(these are all the possible cases included in the null and alternative hypotheses),

the critical region is defined by the set of values that are so large that are unlikely

to be obtained if C ∼ N (0, 1), and hence constitute evidence against the null

hypothesis, and in favor of the alternative hypothesis that we defined.

The critical value is the value Cα that satisfies:

Pµ0(C > Cα) = α = 1− Φ(Cα) ⇒ Cα = Φ−1(1− α). (5)

The power function is:

π(µ) = Pµ(C > Cα) = 1− Φ(Cα − θ) = Φ(θ − Cα). (6)

Hence, the power function has the following shape:
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If σ2 is unknown, we also know from Chapter 4 that:

X̄ − µ
s/
√
N
∼ tN−1. (7)

Hence, define the following statistic:

t ≡ X̄ − µ0

s/
√
N
. (8)

Under H0, µ = µ0, and, hence, t ∼
H0

tN−1, independently of the value of σ2. Now

the critical value is the value tα such that:

Pµ0(t > tα) = α = 1− Ft(tα). (9)

Hence, we need the distribution tables for the Student-t distribution. Graphically,

if H0 is true:

III. Likelihood Ratio Test

Note that, in the previous example, we could define infinite different regions of

size α (any region that contains 5% of the area below the pdf if H0 is true). Then,

the question is: why do we tend to consider the critical region in the tail(s)? The

answer has to do with maximizing the power of the test. Intuitively, consider the

following graphical representation:
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By choosing the critical region at the tails, we are increasing the power of the

test. In this Section, we formally prove that, by choosing the critical region at

the tails (one tail for one-sided alternative hypotheses, the two tails for two-sided

hypotheses, e.g. µ 6= µ0) we maximize the power function). More generally, we

analyze what is the best possible test in different situations.

First, we consider the case in which null and alternative hypotheses are simple:

H0 : C(X) ∼ F0(·),
H1 : C(X) ∼ F1(·).

(10)

Let Rα and R′α be two critical regions of size α:

PH0(C ∈ Rα) = PH0(C ∈ R′α) = α. (11)

We say that Rα is preferred to R′α for the alternative H1 if:

PH1(C ∈ Rα) > PH1(C ∈ R′α). (12)

Therefore, among two tests with the same size, the one that has more power is

preferred. More formally, the Neyman-Pearson lemma states that in the test

of F0(·) vs F1(·) (or, equivalently, f0(·) vs f1(·)), if a size α critical region, Rα,

and a constant k > 0 exist, such that:

Rα =

{
X : λ(X) =

f0(X)

f1(X)
< k

}
. (13)

then Rα is the most powerful critical region for any size α test of H0 vs H1. This

lemma is very strong, even though it is also quite restrictive, as it requires both

hypotheses to be simple (e.g. it is not applicable to µ = µ0 vs µ > µ0). λ(X)

is know as the likelihood ratio. Small values of λ(X) indicate small likelihood
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of H0 and large likelihood of H1, and, hence, we want those cases in the critical

region. The critical region Rα defined in Equation (13) is known as the size α

critical region of likelihood ratio.

For example, consider a random sample obtained from a normal distribution

with known variance σ2. Consider the following hypotheses:

H0 : µ = µ0,

H1 : µ = µ1,
(14)

with µ1 > µ0. This is the example drawn in the figure above. These hypotheses

are simple, because the distributions under the null and alternative hypotheses

are completely specified. The likelihood ratio is:

λ(X) =

∏N
i=1

1
σ
φ
(
Xi−µ0
σ

)∏N
i=1

1
σ
φ
(
Xi−µ1
σ

) = exp

(
N

2σ2

[
µ2

1 − µ2
0 − 2X̄(µ1 − µ0)

])
. (15)

Now we need to find critical regions of size α for this test statistic. Since we do

not directly know the distribution of λ(X), we can transform it so that we have

an expression in terms of something for which we can compute probabilities:

λ(X) < k ⇔ lnλ(X) < ln k

⇔ −N
σ2

(µ1 − µ0)X̄ < ln k − N

2σ2
(µ2

1 − µ2
0)

⇔ X̄ >
µ1 + µ0

2
− σ2 ln k

N(µ1 − µ0)
, (16)

where in the last step we used the fact that µ2
1−µ2

0 = (µ1−µ0)(µ1+µ0). Therefore,

λ(X) < k is equivalent to C > Cα, which is what we did above, where, in this

case, since we know σ2, C is defined by Equation (8). This explains why we pick

the critical region in the tail of the distribution: the statistic C does not depend

on µ1. Therefore, the critical region will be the same regardless of the alternative

hypothesis.

The case of composite hypothesis is much more useful in practice. The sim-

ple hypotheses case, nonetheless, is useful because it allows us to implement the

Neyman-Pearson lemma. It will also serve as a key ingredient in the implemen-

tation of the Neyman-Pearson lemma to the composite case.

Let H0 and H1 be composite hypotheses (the case in which only one of them is

composite is a special case):

H0 : θ ∈ Θ0,

H1 : θ ∈ Θc
0 = Θ\Θ0,

(17)
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where Θ is the set of all possible parameters. A test with critical region Rα and

power function π(θ) is uniformly more powerful for a size α if:

1) maxθ∈Θ0 π(θ) = α, that is, it is of size α.

2) π(θ) ≥ π′(θ) for any θ ∈ Θ, and any test of size α and power function π′(·).

In general, uniformly more powerful tests do not exist because it is difficult that

the second condition is satisfied in general. Therefore, there is no equivalent of

the Neyman-Pearson lemma for the composite case. However, we proceed with an

alternative: the generalized likelihood ratio test , which defines the likelihood

ratio as:

λ(X) =
maxθ∈Θ0 L(X; θ)

maxθ∈Θ L(X; θ)
=
L(X; θ̂0)

L(X; θ̂1)
. (18)

This test statistic is very useful to test equality restrictions on the parameters.

In this case, λ = L(θ̂r)

L(θ̂u)
, where θ̂r and θ̂u indicate, respectively, the estimated

coefficients for the restricted and unrestricted models.

To build the test, we need to know the distribution of λ(X) or of a transforma-

tion of it. Interestingly, if the samples are large (see Chapter 8 for a reference)

the distribution of −2 lnλ is approximately χ2.

Finally, we say that a test is unbiased if the power under H0 is always smaller

that the power under H1, and we say that the test if consistent if the power

under H1 tends to 1 when N→∞.

To illustrate all this, we retake some of the examples above, and we introduce

some new examples. The first example is the one-sided test of the normal mean

with known σ2 described above. In this case, as the null hypothesis is simple, we

can simply apply the Neyman-Pearson lemma for all the possible values of the

alternative (i.e., the test µ = µ0 vs µ > µ0 is an infinite sequence of tests of the

form µ = µ0 vs µ = µ1 for all µ1 > µ0). Therefore, C =
√
N(X̄−µ0)
σ2 > Cα describes

a test that is uniformly more powerful for a size α. The case of unknown σ2 will be

analogous, except that the test will be defined by t > tα, which will be distributed

as a Student-t instead of a normal.

Consider, as a second example, the two tail test for the mean of a normal

distribution with known variance, that is:

H0 : µ = µ0,

H1 : µ 6= µ0.
(19)

The critical region is still defined by the statistic C defined above, but now the

critical region is defined by |C| > C ′α = Cα/2:
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Note that, as before, the distribution under the alternative is given byN (θ, 1) with

θ ≡
√
N
σ

(µ− µ0). Therefore, unlike in the previous case, the power function is:

π′(µ) = Pµ(|C| > Cα/2) = 1− [Φ(Cα/2 − θ)− Φ(−Cα/2 − θ)]. (20)

To illustrate that a uniformly most powerful test does not exist, let us compare

the π′(µ) with the power function π(µ) defined in Equation (6):

It is illustrative to put the two power functions in the same graph to compare:
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Clearly, the one-sided test is preferred for the alternatives that imply µ > µ0, and

the two tail is preferred for µ < µ0 (a one sided test of the type µ = µ0 vs µ < µ0

would be the most powerful one when µ < µ0). The key here is that the one tail

test is very good for the alternatives with µ > µ0, but very bad for the alternatives

with µ < µ0. We would need to prove that |C| > Cα/2 is the Neyman-Pearson

critical region for the two-tail test, but we will not do it in class (it is strongly

recommended as an exercise).

IV. Confidence Intervals

In Chapters 5 and 6, we provided very specific approximations to the param-

eter value of interest: point estimates . However, it is useful to provide an

approximation in the form of an interval. In this section, we provide an interval

approximation to the true parameter value that we call confidence interval . It

is natural to study here, as they are closely related to hypothesis testing.

A confidence interval is defined by a pair of values r1(X) and r2(X) (or r1(θ̂)

and r2(θ̂)) such that P (r1(X) < θ0 < r2(X)) = 1 − α, where α indicates the

significance level as in the previous sections. In words, the confidence interval is

a range of possible values for θ that, given the sample obtained, we infer contains

the true parameter with probability 1−α. Importantly, the functions that define

the confidence intervals do not depend on the true parameter value.

The confidence intervals are constructed in the exact same way that we find the

critical value for a two-tail hypothesis test. If the distribution of r(θ̂) is symmetric

and unimodal, the confidence intervals will typically be symmetric. One could also

build one-sided confidence intervals (i.e., either r1(X) = −∞ or r2(X) =∞, but

this practice is rather rare.

For example, in our example of the mean, if C0.025 ≈ 1.96 (obtained from the

tables of the normal distribution), the confidence interval for the mean would be

[X̄ − 1.96 ∗ σ√
N
, X̄ + 1.96 ∗ σ√

N
].

In Bayesian inference, we construct confidence intervals based on the posterior

distribution. In that case, we define Bayesian confidence intervals grouping

the regions of the posterior distribution that accumulate more density so that we

accumulate density up to 1− α. Thus:

Rθ,α ≡ {θ : h(θ|X) > kα}, (21)

so that Ph(θ ∈ Rθ,α ≥ 1 − α). The interval does not need to be a contiguous

set. In the following figure, you can see two examples, one in which the area is

contiguous (Example 1), and one in which it is not (Example 2):
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V. Hypothesis Testing in a Normal Linear Regression Model

A. Tests for Single Coefficient Hypotheses

Consider the normal linear regression model defined by Assumptions 1 through 3

in Chapter 6. Recall that:

Y = Wδ + U ,

δ̂ = (W ′W )−1W ′y = δ + (W ′W )−1W ′U ,

Y |W ∼ N (Wδ, σ2IN),

(22)

which implies that:

(δ̂ − δ)|W ∼ N (0, σ(W ′W )−1). (23)

For this model, we want to test hypotheses of the form:

H0 : δj = δj0,

H1 : δj 6= δj0,
or

H0 : δj = δj0,

H1 : δj > δj0.
(24)

Define the following statistic:

Zj ≡
δ̂j − δj

σ
√

(W ′W )−1
jj

, (25)

where (W ′W )−1
jj indicates the jjth element of the matrix (W ′W )−1. Cearly:

Zj|W ∼ N (0, 1). (26)
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To derive the unconditional distribution of the statistic, we note that f(Zj|W )

does not depend on W , and, thus, f(Zj|W ) = f(Zj). Hence, we can conclude that:

Zj ∼ N (0, 1). (27)

If σ2 is unknown, we follow the analogy for the sample mean derived in Chap-

ter 4, and derive a t statistic:

t ≡ δ̂j − δj
ŝ.e.(δ̂j)

∼ tN−K , (28)

where K is the size of the vector δ and ŝ.e.(δ̂j) = s
√

(W ′W )−1
jj is the estimated

standard error of the coefficient. To prove that t ∼ tN−K , we proceed as in

Chapter 4. Dividing the numerator by the standard error, we obtain Zj, which is

distributed as a standard normal. More specifically:

Zj =
δ̂j − δj

σ
√

(W ′W )−1
jj

=
1√

(W ′W )−1
jj

(W ′W )−1W ′Ũ ≡ PŨ ∼ N (0, 1), (29)

where Ũ ∼ N (0, IN). Therefore, we can rewrite the t statistic as:

t =
Zj√

V/(N −K)
, (30)

where V ≡ (N−K)s2

σ2 . Now:

V ≡ (N −K)s2

σ2
=
Û ′Û

σ2
=
U ′MU

σ2
= Ũ ′MŨ ∼ χ2

N−K , (31)

where M = (IN −W (W ′W )−1W ′), which is symmetric, idempotent, and its rank

is N −K (the proof is exactly as in Chapter 4). Now we only need to prove that

Zj and V are independent, which we do by showing that PM = 0:

PM =
1√

(W ′W )−1
jj

(W ′W )−1W ′[IN −W (W ′W )−1W ′]

=
1√

(W ′W )−1
jj

[(W ′W )−1W ′ − (W ′W )−1W ′W (W ′W )−1W ′]

=
1√

(W ′W )−1
jj

[(W ′W )−1W ′ − (W ′W )−1W ′]

= 0. (32)

This completes the proof of t|W ∼ tN−K . As a final step, to derive the uncondi-

tional distribution, we note again that f(t|W ) does not depend on W , and, thus,
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f(t) = f(t|W ), hence concluding that:

t ∼ tN−K . (33)

Given all these test statistics and their distributions, we then proceed with infer-

ence in the same way as described in previous sections.

B. Tests for Multiple Coefficients Hypotheses

Consider the following test of linear restrictions:

H0 : Rδ = Rδ0,

H1 : Rδ 6= Rδ0.
(34)

where R is a matrix of size Q×K, where Q ≤ K, and rank(R) = Q. This is general

enough to test any linear combination of regressors. For notation compactness,

we define A ≡ (W ′W )−1. We can write the following statistic:

F ≡ (δ̂ − δ)′R′[RAR′]−1R(δ̂ − δ)/Q
s2

∼ FQ,N−K . (35)

Note that the rank condition for R is necessary for RAR′ to be invertible. The

detailed proof is left as an exercise, but intuitively:

δ̂|W ∼ N (δ, σ2(W ′W )−1)

⇒ Rδ̂|W ∼ N (Rδ, σ2R(W ′W )−1R′)

⇒ R(δ̂ − δ)|W ∼ N (0, σ2R(W ′W )−1R′). (36)

Now note that the numerator is a combination of Q squared standard normals

(provided that we divide by σ), that we should prove that are independent (in

which case is a χ2
Q), divided by the degrees if freedom Q. The denominator (once

divided by σ) is a χ2
N−K divided by the degrees of freedom N − K, as we have

been doing for the t-test several times. Thus, proving that the χ2 variables in the

numerator and denominator are independent, we would complete the proof, given

the definition of the F -distribution in Chapter 4.

One particular application of this test is testing for the values of several coeffi-

cients simultaneously. For example, consider the following case for δ = (α, β)′:

H0 : α = α0 and β = β0,

H1 : α 6= α0 or β 6= β0.
(37)

In this case, R = I2. And, hence, the statistic boils down to:

F =
(δ̂ − δ)′W ′W (δ̂′ − δ)/2

s2
∼ F2,N−2. (38)
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The following figure determines how we construct the confidence interval (given

by P [F < Fα
2,N−2] = 1− α):
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