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I. Classical Regression Model

A. Introduction

In this chapter, we are interested in estimating the conditional expectation

function E[Y |X] and/or the optimal linear predictor E∗[Y |X] (recall that they

coincide in the case where the conditional expectation function is linear). The

generalization of the result in Chapter 3 about the optimal linear predictor for

the case in which Y is a scalar and X is a vector is:

E∗[Y |X] = α + β′X ⇒ β = [Var(X)]−1 Cov(X, Y )

α = E[Y ]− β′ E[X].
(1)

Consider the bivariate case, where X = (X1, X2)
′. It is interesting to compare

E∗[Y |X1] and E∗[Y |X1, X2]. Let E∗[Y |X1] = α∗ + β∗X1 and E∗[Y |X1, X2] =

α + β1X1 + β2X2. Thus:

E∗[Y |X1] = E∗[E∗[Y |X1, X2]|X1] = α + β1X1 + β2 E∗[X2|X1]. (2)

Let E∗[X2|X1] = γ + δX1. Then:

E∗[Y |X1] = α + β1X1 + β2(γ + δX1) ⇒ β∗ = β1 + δβ2
α∗ = α + γβ2.

(3)

This result tells us that the effect of changing variable X1 on Y is given by a

direct effect (β1) and an indirect effect through the effect of X1 on X2 and X2

on Y . For example, consider the case in which Y is wages, X1 is age, and X2 is

education, with β1, β2 > 0. If we do not include education in our model, then we

could obtain a β∗1 that is negative, as older individuals may have lower education.

B. Ordinary Least Squares

Consider a set of observations {(yi, xi) : i = 1, ..., N} where yi are a scalars, and

xi are vectors of size K×1. Using the analogy principle, we can propose a natural
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estimator for α and β:1

(α̂, β̂) = arg min
(a,b)

1

N

N∑
i=1

(yi − a− b′xi)2. (4)

This estimator is called Ordinary Least Squares . The solution to the above

problem is:

β̂ =

[
N∑
i=1

(xi − x̄N)(xi − x̄N)′

]−1 N∑
i=1

(xi − x̄N)(yi − ȳN),

α̂ = ȳN − β̂′x̄N . (5)

Note that the first term of β̂ is a K×K matrix, while the second is a K×1 vector.

C. Algebraic Properties of the OLS Estimator

Let us introduce some compact notation. Let δ ≡ (α, β′)′ be the parameter

vector, let y = (y1, ..., yN)′ be the vector of observations of Y , and let W =

(w1, ..., wN)′ such that wi = (1, x′i)
′ be the matrix (here we are using capital letters

to denote a matrix, not a random variable) of observations for the remaining

variables. Then:

δ̂ = arg min
d

N∑
i=1

(yi − w′id)2 = arg min
d

(y −Wd)′(y −Wd). (6)

And the solution is:

δ̂ =

(
N∑
i=1

wiw
′
i

)−1 N∑
i=1

wiyi = (W ′W )−1W ′y. (7)

Let us do the matrix part in detail. First note:

(y −Wd)′(y −Wd) = y′y − y′Wd− d′W ′y + d′W ′Wd

= y′y − 2d′W ′y + d′W ′Wd. (8)

The last equality is obtained by observing that all elements in the sum are scalars.

The first order condition is:

−2W ′y + 2(W ′W )δ̂ = 0,

W ′y = (W ′W )δ̂,

δ̂ = (W ′W )−1W ′y.

(9)

1 To avoid complications with the notation below, in this chapter we follow the convention
of writing the estimators as a function of realizations (yi, xi) instead of doing it as functions of
the random variables (Yi, Xi).
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Note that we need W ′W to be full rank, such that it can be inverted. This is to

say, we require absence of multicollinearity .

D. Residuals and Fitted Values

Recall from Chapter 3 the prediction error U ≡ y − α − β′X = y − (1, X ′)δ.

In the sample, we can define an analogous concept, which is called the residual :

û = y −Wδ̂. Similarly, we can define the vector of fitted values as ŷ = Wδ̂.

Clearly, û = y − ŷ. Some of their properties are useful:

1) W ′û = 0. This equality comes trivially from the derivation in (9): W ′û =

W ′(y−Wδ̂) = W ′y− (W ′W )δ̂ = 0. Looking at these matrix multiplications

as sums, we can observe that they imply
∑N

i=1 ûi = 0, and
∑N

i=1 xiûi = 0.

Interestingly, these are sample analogs of the population moment conditions

satisfied by U .

2) ŷ′û = 0 because ŷ′û = δ̂W ′û = δ̂ · 0 = 0.

3) y′ŷ = ŷ′ŷ because y′ŷ = (ŷ + û)′ŷ = ŷ′ŷ + û′ŷ = ŷ′ŷ + 0 = ŷ′ŷ.

4) ι′y = ι′ŷ = Nȳ, where ι is a vector of ones, because ι′û =
∑N

i=1 ûi = 0, and

ι′y = ι′ŷ + ι′û.

E. Variance Decomposition and Sample Coefficient of Determination

Following exactly the analogous arguments as in the proof of the variance de-

composition for the linear prediction model in Chapter 3 we can prove that:

y′y = ŷ′ŷ + û′û and V̂ar(y) = V̂ar(ŷ) + V̂ar(û), (10)

where V̂ar(z) ≡ N−1
∑N

i=1(z− z̄)2 To prove the first, we simply need basic algebra:

û′û = (y − ŷ)′(y − ŷ) = y′y − ŷ′y − y′ŷ + ŷ′ŷ = y′y − ŷ′ŷ. (11)

The last equality is obtained following the result y′ŷ = ŷ′ŷ obtained in item 3)

from the list above. To prove the second equality in (10), we need to recall from

Chapter 4 that we can write
∑N

i=1(y − ȳ)2 = (y − ιȳ)′(y − ιȳ). And now, we can

operate:

(y − ιȳ)′(y − ιȳ) = y′y − ȳι′y − y′ῑ(y) + ȳ2ι′ι = y′y −Nȳ2. (12)

Given the result in item 4) above, we can conclude that (ŷ−ιȳ)′(ŷ−ιȳ) = ŷ′ŷ−Nȳ2.
Thus:

NV̂ar(û) = û′û = y′y − ŷ′ŷ = y′y −Nȳ2 − (ŷ′ŷ −Nȳ2) = NV̂ar(y)−NV̂ar(ŷ),
(13)
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completing the proof.

Similar to the population case described in Chapter 3, this result allows us to

write the sample coefficient of determination as:

R2 ≡ 1−
∑N

i=1 u
2
i∑N

i=1(yi − ȳ)2
=

∑N
i=1(ŷi − ȳ)2i∑N
i=1(yi − ȳ)2

=
V̂ar(ŷ)

V̂ar(y)
=

[Ĉov(y, ŷ)]2

V̂ar(ŷ)V̂ar(y)
= ρ2y,ŷ.

(14)

The last equality is obtained by multiplying and dividing by ŷ′ŷ, and using that

ŷ′ŷ = y′ŷ as shown above.

F. Assumptions for the Classical Regression Model

So far we have just described algebraic properties of the OLS estimator as an

estimator of the parameters of the linear prediction of Y given X. In order to

use the OLS estimator to obtain information about E[Y |X], we require additional

assumptions. This extra set of assumptions constitute what is known as the

classical regression model . These assumptions are:

• Assumption 1 (linearity+strict exogeneity): E[y|W ] = Wδ, which is

equivalent to say E[yi|x1, ..., xN ] = α + x′iβ, or to define y ≡ Wδ + u where

E[u|W ] = 0. There are two main conditions embedded in this assumption.

The first one is linearity , which implies that the optimal linear predictor

and the conditional expectation function coincide. The second one is that

E[yi|x1, ..., xN ] = E[yi|xi], which is called (strict) exogeneity . Exogeneity

implies that Cov(ui, xkj) = 0 and E[ui|W ] = 0. To prove it, note that

E[ui] = E[E[ui|W ]] = E[E[yi − α − x′iβ|W ]] = E[E[yi|W ] − α − x′iβ] = 0,

and, hence, Cov(ui, xkj) = E[uixkj] = E[xkj E[ui|W ]] = 0. This assumption

is satisfied by an i.i.d. random sample:

f(yi|x1, ..., xN) =
f(yi, x1, ...., xN)

f(x1, ...., xN)
=
f(yi, xi)f(x1)...f(xi−1)f(xi+1)...f(xN)

f(x1)...f(xN)

=
f(yi, xi)

f(xi)
= f(yi|xi), (15)

which implies that E[yi|x1, ..., xN ] = E[yi|xi]. This is not satisfied, for ex-

ample, by time series data: if xi = yi−1 (that is, a regressor is the lag of the

dependent variable), as E[yi|x1, ..., xN ] = E[yi|xi, xi+1 = yi] = yi 6= E[yi|xi].

• Assumption 2 (homoskedasticity): Var(y|W ) = σ2IN . This assumption

implies (along with the previous one) that Var(yi|x1, ..., xN) = Var(yi|xi) =
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σ2 and Cov(yi, yj|x1, ..., xN) = 0 for all i 6= j:

Var(yi|xi) = Var(E[yi|x1, ..., xN ]|xi) + E[Var(yi|x1, ..., xN)|xi]

= Var(E[yi|xi]|xi) + E[σ2|xi] = 0 + σ2 = σ2. (16)

We could also check as before that an i.i.d. random sample would satisfy

this condition.

II. Statistical Results and Interpretation

A. Unbiasedness and Efficiency

In the classical regression model, E[δ̂] = δ:

E[δ̂] = E[E[δ̂|W ]] = E[(W ′W )−1W ′ E[y|W ]] = E[δ] = δ, (17)

where we crucially used the Assumption 1 above. Similarly, Var(δ̂|W ) = σ2(W ′W )−1:

Var(δ̂|W ) = (W ′W )−1W ′Var(y|W )W (W ′W )−1 = σ2(W ′W )−1, (18)

where we used Assumption 2. Note that Var(δ̂) = σ2 E[(W ′W )−1]:

Var(δ̂) = Var(E[δ̂|W ]) + E[Var(δ̂|W )] = 0 + σ2 E[(W ′W )−1]. (19)

The first result that we obtained indicates that OLS gives an unbiased estimator

of δ under the classical assumptions. Now we need to check how good is it in terms

of efficiency. The Gauss-Markov Theorem establishes that OLS is a BLUE

(best linear unbiased estimator). More specifically, the theorem states that in

the class of estimators that are conditionally unbiased and linear in y, δ̂ is the

estimator with the minimum variance.

To prove it, consider an alternative linear estimator δ̃ ≡ Cy, where C is

a function of the data W . We can define, without loss of generality, C ≡
(W ′W )−1W ′+D, where D is a function of W . Assume that δ̃ satisfies E[δ̃|W ] = δ

(hence, δ̃ is another linear unbiased estimator). We first check that E[δ̃|W ] = δ is

equivalent to DW = 0:

E[δ̃|W ] = E[δ + (W ′W )−1W ′u+DWδ +Du|W ] = (I +DW )δ

(I +DW )δ = δ ⇔ DW = 0, (20)

given that E[Du|W ] = DE[u|W ] = 0. An implication of this is that δ̃ = δ + Cu,

since DWδ = 0. Hence:

Var(δ̃|W ) = E[(δ̃ − δ)(δ̃ − δ)′|W ] = E[Cuu′C ′|W ] = C E[uu′|W ]C ′ = σ2CC ′

= (W ′W )−1σ2 + σ2DD′ = Var(δ̂|W ) + σ2DD′ ≥ Var(δ̂|W ). (21)
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Therefore, Var(δ̂|W ) is the minimum conditional variance of linear unbiased es-

timators. Finally, to prove that Var(δ̂) is the minimum as a result we use the

variance decomposition and the fact that the estimator is conditionally unbiased,

which implies Var(E[δ̃|W ]) = 0. Using that, we obtain Var(δ̃) = E[Var(δ̃|W )].

Hence, proving whether Var(δ̃) − Var(δ̂) ≥ 0, which is what we need to prove

to establish that Var(δ̂) is the minimum for this class of estimators, is the same

as proving E[Var(δ̃|W ) − Var(δ̂|W )] ≥ 0. Note that, given a random matrix A,

because Z ′ E[A]Z = E[Z ′AZ] if A is positive semidefinite, E[A] is also positive

semidefinite. Therefore, since we proved that Var(δ̃|W ) − Var(δ̂|W ) ≥ 0, that

is, it is positive semidefinite, then its expectation should be positive semidefinite,

which completes the prove.

B. Normal classical regression model

Let us now add an extra assumption:

• Assumption 3 (normality): y|W ∼ N (Wδ, σ2IN), that is, we added the

normality assumption to Assumptions 1 and 2.

In this case, we can propose to estimate δ by ML (which we know provides the

BUE). The conditional likelihood function is:

LN(δ, σ2) = f(y|W ) = (2π)−
N
2

(
σ2N

)− 1
2 exp

(
− 1

2σ2
(y −Wδ)′(y −Wδ)

)
, (22)

and the conditional log-likelihood is:

LN(δ, σ2) = −N
2

ln(2π)− N

2
lnσ2 − 1

2σ2
(y −Wδ)′(y −Wδ). (23)

The first order conditions are:

∂ LN

∂δ
=

1

σ2
W ′(y −Wδ) = 0 (24)

∂ LN

∂σ2
=

1

2σ2

(
(y −Wδ)′(y −Wδ)

σ2
−N

)
= 0, (25)

which easily delivers that the maximum likelihood estimator of δ is the OLS

estimator, and σ̂2 = û′û
N

. Therefore, we can conclude that, under the normality

assumption, the OLS estimator is conditionally a BUE. We could prove, indeed,

that σ2(W ′W )−1 is (conditionally) the Cramer-Rao lower bound. Even though

we are not going to prove it (it is not a trivial proof), unconditionally, there is no

BUE. To do it, we would need to use the unconditional likelihood f(y|W )f(W )

instead of f(y|W ) alone.
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Regarding σ̂2, similarly to what happened with the variance of a random vari-

able, the MLE is biased:

û = y −Wδ̂ = y −W (W ′W )−1W ′y = (I −W (W ′W )−1W ′)y = My. (26)

Similar to what happened in Chapter 5 (check the arguments there to do the

proofs), M , which is called the residual maker, is idempotent and symmetric,

its rank is equal to its trace, and equal to N − K, where K is the dimension

of δ (because tr(AB) = tr(BA), and hence tr(W (W ′W )−1W ′) = tr(IK)), and

MW = 0. Therefore, û = My = M(Wδ + u) = Mu. Hence:

û′û = (Mu)′Mu = u′M ′Mu = u′Mu = tr(u′Mu) = tr(uu′M) = tr(Muu′), (27)

where we used the fact that u′Mu is a scalar (and hence equal to its trace), and

some of the tricks about traces used above. Now:

E[û′û|W ] = E[tr(Muu′)|W ] = tr(E[Muu′|W ]) = tr(M E[uu′|W ])

= tr(Mσ2IN) = σ2 tr(M) = σ2(N −K). (28)

Hence, an unbiased estimator is s2 ≡ û′û
N−K , and, as a result (easy to prove using

the law of iterated expectations) an unbiased estimator of the variance of δ̂ is

V̂ar(δ̂) = s2(W ′W )−1.
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