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I. Analogy Principle

The estimation problem consists of obtaining an approximation to a popu-

lation characteristic θ0 combining the information provided in a random sample.

An estimator is a rule for calculating an estimate of a given quantity based on

observed data. Hence, an estimator is a function from the sample (X1, ..., XN),

which we denote by θ̂(X1, ..., XN), and an estimate is the result of implementing

the estimator to the given sample, denoted by θ̂(x1, ..., xN). In general, when the

context is clear, we typically abuse of notation and simply use θ̂ to denote both

the estimator and the estimate. The estimator is a statistic, and the estimate is

a particular realization of this statistic.

A general rule to decide which estimator to implement is to define in the sample

a statistic that satisfies similar properties to those satisfied by the true param-

eter in the population. This is called the analogy principle . For example, to

estimate the population mean, we often compute the sample mean; to estimate

the variance, we often compute the sample variance; to estimate the median, we

compute the median in the sample.

II. Desirable Properties of an Estimator

We define now certain criteria to determine the “quality” of an estimator. An

estimator is good if it is a good approximation to the true parameter no matter

which is the true value of the parameter. For example, consider a population with

mean θ. If we are interested in estimating θ, we could propose as an estimator

θ̂ = 3 (regardless of what information I have in my sample). This estimator will

be very good only if θ = 3, but, in general, it is going to be bad. Instead, if

we propose X̄N , the estimator will be generally good, as we expected X̄N to be

centered around θ, no matter what is the real value of θ.
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A measure of how good is an estimator is the mean squared error (MSE):

MSE(θ̂) ≡ E[(θ̂ − θ)2]. (1)

The MSE can be decomposed as follows:

MSE(θ̂) = E[(θ̂ − θ)2] = E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]

= E[(θ̂ − E[θ̂])2] + E[(E[θ̂]− θ)2] + 2E[θ̂ − E[θ̂]](E[θ̂]− θ)

= Var(θ̂) + (E[θ̂]− θ)2. (2)

The difference E[θ̂]− θ is called bias . Thus, a good estimator, which is one that

has small MSE, is an estimator that have small variance (precision), and small

(or no) bias. An unbiased estimator is an estimator that has zero bias, that is,

an estimator that satisfies E[θ̂] = θ.

For example, we saw in Chapter 4 that Var(X̄N) = Var(X)
N

, and E[X̄N ] = E[X].

Thus, MSE(X̄N) = Var(X)
N

. We could do the same for s2
N or for σ̂2

N . Indeed, in

an exercise in this chapter, you will compare the MSE of these two estimators

of Var(X). There, you will see that σ̂2
N , even though it is a biased estimator of

Var(X), has a lower MSE than the unbiased estimator s2, no matter what the value

of σ2 or the sample size are. There are other examples where this is not true in

general, but only for some values of the true parameter or for certain sample sizes.

Then the question is: what is more important, absence of a bias or lower MSE?

There is obviously a trade-off, and no clear answer. What is clear, though, is that

among the estimators that are unbiased, we prefer those that have less variance.

We say that an estimator is more efficient than another if, being both unbiased,

it has lower variance. Among all the estimators that are unbiased, the on that has

the minimum possible variance is called best unbiased estimator (BUE), the

minimum variance unbiased estimator, or simply the most efficient estimator. A

more restrictive criterion is to search for the best linear unbiased estimator

(BLUE), which is the best unbiased estimator of the class of estimators that are

linear combinations of the data.

III. Moments and Likelihood Problems

A moments problem is defined by two equivalent conditions on the parameter

of interest:

• It optimizes an expectation function. E.g.:

µ = arg min
c

E[(Y − c)2] or (α, β) = arg min
(a,b)

E[(Y − a− bX)2]. (3)
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• It solves a moment condition. E.g.:

E[(Y − µ)] = 0 or E
[
(Y − α− βX)

(
1

X

)]
=

(
0

0

)
. (4)

Notice that any of these two requirements makes any assumption on the popula-

tion distribution beyond the relevant moments. A method of moments estimator

would use sample analogs to these conditions, and would obtain µ̂ or (α̂, β̂) that

satisfy them.

The likelihood problem is defined by a more completely specified environ-

ment. We assume that the population distribution is a known function, except

for the parameters of interest, which are unknown. For instance, we know that

the population pdf is {f(X; θ) : θ ∈ Θ}, where Θ is the space of parameters for

which the function is defined, but we do not know the value θ = θ0, which is the

true parameter value.

The fact that we know more information about the population of interest al-

lows us to obtain better estimators from a given sample, provided that is extra

information (the functional form of the population distribution) is correct.

As we prove below, the true parameter satisfies:

θ0 = arg max
θ∈Θ

E[ln f(X; θ)]. (5)

To prove it, consider the first order condition of the above optimization problem:

E
[
∂ ln f(X; θ)

∂θ′

]
≡ E[z(X; θ)] = 0

⇔
∫ ∞
−∞

z(X; θ)f(X; θ0)dX = 0

⇔
∫ ∞
−∞

∂ ln f(X; θ)

∂θ′
f(X; θ0)dX = 0

⇔
∫ ∞
−∞

1

f(X; θ)

∂f(X; θ)

∂θ′
f(X; θ0)dX = 0 (6)

Now, note that, because f(X; θ0) is a pdf, it must integrate to 1:∫ ∞
−∞

f(X; θ0)dX = 1

⇔ ∂

∂θ′

∫ ∞
−∞

f(X; θ0)dX = 0

⇔
∫ ∞
−∞

∂f(X; θ0)

∂θ′
dX = 0. (7)
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(note that we are assuming that the range of integration does not depend on θ0).

Hence, replacing θ = θ0 in Equation (6), we obtain the same expression as in Equa-

tion (7), and thus we conclude that θ0 is a solution of the problem in Equation (5),

because it satisfies the first order condition. We call z(X; θ0) the score , and the

fact that E[z(X; θ0)] = 0 is called zero expected score condition. Finally, note

that the likelihood problem can also be seen as a moments problem.

IV. Maximum Likelihood Estimation

Consider a sample of size X, (X1, ..., XN). In a likelihood problem, the pdf of

this sample is known (up to parameter values), as we assume that {f(X; θ) : θ ∈
Θ} is known. The pdf of the sample written as a function of θ is known as the

likelihood function , and is equal to:

LN(θ) =
N∏
i=1

f(Xi; θ). (8)

LN(θ) can be seen both as a function of the data for a given parameter θ (the pdf

of the sample if θ = θ0), or a function {LN(θ) : θ ∈ Θ} of the parameter for a

fixed sample (the likelihood function). The log-likelihood function is defined as:

LN(θ) ≡ lnLN(θ) =
N∑
i=1

ln f(Xi; θ). (9)

Given a sample with log-likelihood LN(θ), we define the Maximum Likelihood

Estimator (MLE) as:

θ̂MLE ≡ arg max
θ∈Θ
LN(θ) = arg max

θ∈Θ

1

N

N∑
i=1

ln f(Xi; θ). (10)

Note that this estimator is the sample analog of the condition that the true pa-

rameter θ0 satisfies in the population, as described by Equation (5). The idea of

the MLE is to approximate θ0 by the value of θ that maximizes the likelihood

(probability in the discrete case, density in the continuous case) of obtaining the

sample that we observe. This is called the likelihood principle .

The MLE satisfies the first order conditions of the optimization problem in

Equation (10):

1

N

N∑
i=1

∂ ln f(Xi; θ̂MLE)

∂θ′
= 0. (11)

These conditions are sample analogs of the zero expected score rule.
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V. The Cramer-Rao Lower Bound

The variance of the score is called the Fisher information (or simply infor-

mation), I(θ0) ≡ Var(z(X; θ0)). The name information is motivated by the fact

that I(θ0) is a way of measuring the amount of information that a random variable

X contains about an unknown parameter θ0 for the distribution that models X

(variation in the slope of the likelihood function). The information equality is

an interesting property satisfied by the variance of the score:

Var(z(X; θ0)) = E[z(X; θ0)z(X; θ0)′] = −E
[
∂2 LN(θ0)

∂θ∂θ′

]
. (12)

To prove it, note that, if the expected score is equal to zero, the derivative of the

expected score should also be equal to zero:

∂

∂θ

∫ ∞
−∞

∂ LN(θ0)

∂θ′
f(X; θ0)dX = 0

⇔
∫ ∞
−∞

∂ LN(θ0)

∂θ∂θ′
f(X; θ0)dX +

∫ ∞
−∞

∂ LN(θ0)

∂θ

∂f(X; θ0)

∂θ′
dX = 0

⇔ E
[
∂2 LN(θ0)

∂θ∂θ′

]
+

∫ ∞
−∞

∂ LN(θ0)

∂θ

∂f(X; θ0)

∂θ′
1

f(X; θ0)
f(X; θ0)dX = 0

⇔ E
[
∂2 LN(θ0)

∂θ∂θ′

]
+ E

[
∂ LN(θ0)

∂θ

∂ LN(θ0)

∂θ′

]
= 0, (13)

which, after rearranging the terms, delivers the result.

The Cramer-Rao inequality states that any unbiased estimator θ̃ satisfies:

Var(θ̃) ≥ I(θ0)−1. (14)

Thus, this inequality indicates that the inverse of the information matrix is the

lower bound for the variance for any unbiased estimator. Therefore, an unbiased

estimator that has variance equal to the Cramer-Rao lower bound is the BUE. As

we will be able to discuss after we introduce some concepts in Chapter 8, when the

sample size tends to infinity, the variance of the MLE tends to the Cramer-Rao

lower bound, and, hence, in that case, it is the BUE. Moreover, if a BUE exists,

it is the MLE (we are not going to prove it).

We are going to prove the Cramer-Rao inequality for the simple case in which

θ0 is a scalar (and so is I(θ0)), but the results are directly generalizable to the case

in which θ0 is a vector (and thus I(θ0) is a matrix). To do so, we are going to use

the Schwartz inequality that we proved in Chapter 3. The Schwartz inequality

states that Cov(X, Y )2/(Var(X) Var(Y )) ≤ 1. We are going to define two random
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variables: θ̃ and z(X; θ0). To compute Cov(θ̃, z(X; θ0)) we start from the fact that

θ̃ is an unbiased estimator, and hence satisfies E[θ̃] = θ0:

E[θ̃] = θ0

⇔ ∂

∂θ′0
E[θ̃] =

∂

∂θ′0

∫ ∞
−∞

θ̃f(X; θ0)dX =

∫ ∞
−∞

θ̃
∂f(X; θ0)

∂θ′0
dX = 1

⇔
∫ ∞
−∞

θ̃
∂ ln f(X; θ0)

∂θ′0
f(X; θ0)dX = E[θ̃z(X; θ0)] = 1. (15)

Because E[x(X; θ0)] = 0, this implies that Cov(θ̃, z(X; θ0)) = 1. Thus, the

Schwartz inequality reads as:

1

Var(θ̃) Var(z(X; θ0))
≤ 1 ⇔ Var(θ̃) ≥ 1

Var(z(X; θ0))
=

1

I(θ0))
, (16)

proving the result. The same logic with a bit more tedious algebra applies to the

multivariate case.

Let us illustrate all this with the normal distribution. Consider a random vari-

able X ∼ N (µ0, σ
2
0), for which we have an i.i.d. sample (X1, ..., XN). We are

interested in estimating the parameters θ = (µ, σ2)′. The likelihood function for

the sample is:

LN(µ, σ2) =
N∏
i=1

f(xi) = (2π)−
N
2 (σ2)−

N
2 exp

(
− 1

2σ2

N∑
i=1

(xi − µ)2

)
, (17)

and the log-likelihood is:

LN(µ, σ2) = −N
2

ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2. (18)

The score is:

z(X; θ) =
∂ LN(µ, σ2)

∂(µ, σ2)
=


1

σ2

N∑
i=1

(xi − µ)

−N
2

1

σ2
+

1

2σ4

N∑
i=1

(xi − µ)2

 . (19)

Evaluated at θ = (µ0, σ
2
0), it is easy to check that the expected score is equal

to zero. The MLE picks θ = (µ̂, σ̂2)′ such that z(X; θ̂) = 0 (i.e., the first order

condition is satisfied), which, with simple algebra, delivers:

µ̂ =
1

N

N∑
i=1

Xi = X̄N and σ̂2 =
1

N

N∑
i=1

(Xi − X̄N)2 = σ̂2
N . (20)
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To compute the Cramer-Rao lower bound, we can use the information matrix

equality and compute I(θ0) = −E
[
∂2z(X;θ0)
∂θ∂θ′

]
:

E




N
1

σ2
0

1

σ4
0

N∑
i=1

(xi − µ0)

1

σ4
0

N∑
i=1

(xi − µ0) −N
2

1

σ4
0

+
1

σ6
0

N∑
i=1

(xi − µ0)2


 =


N

σ2
0

0

0
N

2σ4
0

 . (21)

Therefore, the Cramer-Rao lower bound is:

I(θ0)−1 =

σ
2
0

N
0

0
2σ4

0

N

 , (22)

which allows us to extract three conclusions:

1) µ̂ = X̄N is the best unbiased estimator (BUE) of µ0: it is an unbiased

estimator (we saw in Chapter 4 that E[X̄N ] = µ0), and the variance of the

sample mean (derived in Chapter 4) is equal to the Cramer-Rao lower bound.

2) σ̂2 = σ̂2
N is a biased estimator of σ2, as we noted in Chapter 4, and, hence,

the Cramer-Rao result is not applicable. On the other hand, s2
N , which

is an unbiased estimator of σ2
0, is not the BUE, because its variance is

Var(s2
N) = 2σ4

N−1
+ µ4−3σ4

N
(as noted in Chapter 4), larger than the Cramer-

Rao bound. The latter does not surprise us, because we knew that, if there

exist a BUE, it is the MLE.

3) If we knew µ0, and we were to estimate only σ2
0, the estimator that we

would obtain would be σ̂ = σ̃2
N , which is unbiased, and whose variance is

Var(σ̃2
N) =

µ4−σ4
0

N
, where µ4 is the fourth central moment. It turns out that,

for the normal distribution, µ4 = 3σ4, which would imply that the “ideal”

estimator of the variance is indeed a BUE, because its variance is equal to

the Cramer-Rao bound.

As a final note, it is left as an exercise to check that the equality of the information,

which we have used in Equation (21), holds.

VI. Bayesian Inference

Recall the Bayes theorem in Chapter 3:

P (A |B) =
P (B |A)P (A)

P (B)
=

P (B |A)P (A)

P (B |A)P (A) + P (B |Ac)P (Ac)
. (23)
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The second equality is new: we have used the fact that P (B) = P (B∩A) +

P (B∩Ac). If instead of A and Ac we partition the sample space in N mutually

exclusive sets that cover the entire sample space, A1, ...,AN , we can write:

P (Ai | B) =
P (B |Ai)P (Ai)

P (B |A1)P (A 1) + ...+ P (B |AN)P (AN)
. (24)

We often have a priori beliefs about the probability that an event occurs. Imag-

ine we want to estimate whether a coin is fair or not. It is natural to start from

the belief that the probabilities assigned to heads and tails are 0.5 each. If we are

only able to toss the coin once, it makes sense to give a lot of weight to our belief,

and little to the sample, it looks a better strategy than assigning an estimate of

P̂ (heads) ≡ p̂ = 1 for the outcome we obtained. If we can keep tossing the coin,

we will update our beliefs with each toss. If after 10 times we have obtained 8

heads and only 2 tails, we will start to think that maybe the coin is not fair. If,

after tossing it 1,000 times, we obtained 800 heads and 200 tails, then we will

probably conclude that the coin is not fair, and our estimate will be p̂ = 8
10

. This

is the intuition of the type of estimators that we are introducing in this section.

More formally, define subjective probability as the probability function that

describes our beliefs about the true probabilities of the different outcomes. We can

define subjective probabilities even when we do not have any a priori information

or belief. We assume that we know the likelihood of the sample fN(X|θ) up to

the parameter θ, the a priori distribution g(θ) that describes our beliefs about

the true parameter before observing the sample. The Bayesian inference is

based on the a posteriori distribution of the parameter given the information

in the sample, obtained from the application of the Bayes theorem:

h(θ|X) =
f(X|θ)g(θ)∫∞

−∞ f(X|c)g(c)dc
∝ f(X|θ)g(θ). (25)

Importantly, note that we are treating θ (the “parameter”) as a random vari-

able now, not as a given (but unknown) value as we have been doing so far. The

approaches used so far form the basis of the frequentist inference , which is

opposed to the Bayesian inference. In a frequentist approach, the unknown pa-

rameters of the model are not capable of being treated as random variables in

any way. In contrast, a Bayesian approach to inference does allow probabilities to

be associated with unknown parameters. Normally, these associated probabilities

are probabilities in its Bayesian interpretation, which is a quantity that we assign

for the purpose of representing a state of knowledge or belief.

Therefore, in Bayesian estimation, we are primarily interested in obtaining a
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posterior distribution h(θ|X). However, we can also obtain point estimates us-

ing the posterior distribution h(θ|X). For example, the mean of the posterior

distribution minimizes the expected quadratic loss:

Eh[θ|X] = arg min
c

∫ ∞
−∞

(c− θ)2h(θ|X)dθ. (26)

Likewise, the median of the posterior distribution minimizes the expected absolute

loss, and the mode maximizes the posterior density.

Let us illustrate all this by retaking the example of tossing a coin. Let X be

a random variable that takes the value of 1 if the outcome is a head, and let p

denote the probability that X = 1 (1− p is the probability of X = 0, and 0 is the

probability for any other value of X). The likelihood of a sample of size N for X is:

f(X|p) = pr(1− p)N−r, (27)

where r ≡
∑N

i=1Xi. Now we need a prior. Consider the beta distribution with

given values for parameters α and β (such that α, β > 0) as our prior:

g(p) =

{
pα−1(1− p)β−1 1

B(α,β)
if p ∈ [0, 1]

0 otherwise,
(28)

where the last term B(α, β) ≡
∫ 1

0
zα−1(1− z)β−1 is a constant that guarantees the

distribution to integrate to 1. In this case, the posterior distribution of p given

the data is:

h(p|X) ∝ pr+α−1(1− p)N−r+β−1. (29)

A point estimate for p is the mean of the posterior distribution:

p̃ = Eh[p|X] =
α + r

α + r + β +N − r
=

α + r

α + β +N
. (30)

Note that we can rewrite p̃ as follows:

p̃ =
N

α + β +N

r

N
+

α + β

α + β +N

α

α + β
≡ w(N)p̂+ (1− w(N))Eg[p], (31)

with w(N) ∈ (0, 1), and ∂w(N)/∂N = (α+ β)/(α+ β +N)2 > 0. Therefore, our

estimate is a convex combination of the sample mean and the mean of our prior,

with weights that are such that the weight on the former increases (and that on

the latter decreases as a result) when the sample size N increases.
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