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I. Random samples

The objective of this chapter is to make inference about some characteristics of

a population from a set of observations in the data. The population is described

by a probabilistic model like those seen in previous chapters. The observations in

the data are considered as realizations from the probabilistic model. Recall that

one of the main features of a random experiment is that it can be replicated under

the same conditions.

The process through which we obtain our data is called sampling . There are

several ways of sampling. In Chapter 2 we introduced sampling in finite sets as an

example to illustrate the use of combinatorial analysis to compute probabilities.

Simple random sampling is the easiest way of selecting a sample. It is not

always the best way we can do it in Economics, but its simplicity puts it as

the starting point for all others. A collection of random variables (or random

vectors) (X1, ..., XN) is a (simple) random sample from FX if (X1, ..., XN) are

independent and identically distributed (i.i.d) with cdf FX . We can use the word

sample to refer both to this random vector (X1, ..., XN), and to the realization of

it (x1, ..., xN). Each of the elements of this vector is known as an observation .

Given that the observations are i.i.d., the cdf of the sample is:

FX1...XN
(x1, ..., xN) =

N∏
i=1

FX(xi), (1)

and, thus:

fX1...XN
(x1, ..., xN) =

N∏
i=1

fX(xi), (2)
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where fX is the pmf of the sample if X is discrete, and the corresponding pdf if

X is continuous.

For example, consider a Bernoulli random variable with pmf equal to:

fX(x) =


2
3

if x = 0
1
3

if x = 1

0 otherwise.

(3)

Now consider a random sample of three observations obtained from this popula-

tion. As we discussed in Chapter 2, there are 23 = 8 possible permutations, and

the pmf is given by:

Sample: 1 2 3 4 5 6 7 8

x1: 0 0 0 0 1 1 1 1

x2: 0 0 1 1 0 0 1 1

x3: 0 1 0 1 0 1 0 1

fX1...X3(x1, x2, x3): 8
27

4
27

4
27

2
27

4
27

2
27

2
27

1
27

II. Sample mean and variance

A statistic is a single measure of some attribute of a sample. It is calculated by

applying a function to the values of the items of the sample. Any of the synthetic

measures that we computed in Chapter 1 were statistics. In that chapter we were

using them to summarize the data. Now, we are going to use them to infer some

properties of the probability model that generated the data.

As a transformation of random variables, a statistic is a random variable. As

such, it has a probability distribution. This probability distribution is called

sample distribution .

The first of the statistics that we introduced in Chapter 1 is the sample mean .

In a simple random sample, the weights used to compute the sample mean are all

equal, and thus equal to 1
N

. Therefore, here we define the sample mean as:

X̄N ≡
1

N

N∑
i=1

Xi. (4)

In the example before, for each of the possible samples we would obtain a different

sample mean:

Sample: 1 2 3 4 5 6 7 8

x̄: 0 1
3

1
3

2
3

1
3

2
3

2
3

1

Note that all combinations of the same inputs give the same sample mean, so we

could alternatively count the number of combinations instead of permutations.
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Importantly, note that our statistic (the sample mean) has a sample distribution:

fX̄N
(x̄) =



8
27

if x̄ = 0
12
27

if x̄ = 1
3

6
27

if x̄ = 2
3

1
27

if x̄ = 1

0 otherwise.

(5)

Given Equation (5), we could compute E[X̄N ] and Var(X̄N):

E[X̄N ] =
8

27
· 0 +

12

27
· 1

3
+

6

27
· 2

3
+

1

27
· 1 =

1

3
, (6)

and:

Var(X̄N) = E[X̄2
N ]− E[X̄N ]2

=

[
8

27
· 02 +

12

27
·
(

1

3

)2

+
6

27
·
(

2

3

)2

+
1

27
· 12

]
−
(

1

3

)2

=
2

27
=

2/9

3
. (7)

Note that, for this variable, E[X] = p = 1/3, and Var(X) = p(1 − p) = 2/9.

Therefore, at least in this example, E[X̄N ] = E[X] and Var(X̄N) = Var(X)/N .

This result is general, as discussed in the following paragraph.

Let (X1, ..., XN) be a random sample from a population described by the cdf

FX which has mean E[X] = µ and variance Var(X) = σ2. Let X̄N denote the

sample mean of this sample. Then, E[X̄N ] = µ, and Var(X̄N) = σ2/N . Let us

check that:

E[X̄N ] = E

[
1

N

N∑
i=1

Xi

]
=

1

N

N∑
i=1

E[Xi] =
1

N

N∑
i=1

µ =
1

N
Nµ = µ. (8)

And for the variance:

Var(X̄N) = E[(X̄N − µ)2] = E

( 1

N

N∑
i=1

(Xi − µ)

)2


= E

 1

N2

 N∑
i=1

(Xi − µ)2 +
N∑

i=1

N∑
j=1 j 6=i

(Xi − µ)(Xj − µ)


=

1

N2

N∑
i=1

E
[
(Xi − µ)2

]
+

1

N2

N∑
i=1

N∑
j=1 j 6=i

E [(Xi − µ)(Xj − µ)]

=

[
1

N2

N∑
i=1

E
(
(Xi − µ)2

)]
=

1

N
Nσ2 =

σ2

N
, (9)
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where, from the third to the fourth line, we used the fact that, given that the

observations are i.i.d., the covariance between Xi and Xj is equal to zero.

There are three main conclusions to extract from this general result. The first

one is that E[X̄N ], and Var(X̄N) do not depend of the form of FX , they only

depend on its first two moments. The second one is that X̄N is “centered” around

the population mean µ. And the third one is that the dispersion of X̄N is reduced

when we increase N , tending to zero when N→∞. We care about the variance

of X̄N as an indicator of the (inverse of the) precision of X̄N as a proxy for µ:

the smaller Var(X̄N), the more likely is that X̄N is “close” to µ. Thus, the larger

the sample, the more “accurate” is X̄N as an approximation to µ. We will discuss

extensively all this in the following chapters.

A similar analysis can be performed with respect to another of the statistics that

we introduced in Chapter 1: the sample variance . Again, given the observa-

tions are obtained from a random sample, the weight we give to each observation

is equal for all of them, and equal to 1
N

. Thus, the sample variance, which we

denote as σ̂2
N , is defined as:

σ̂2
N ≡

1

N

N∑
i=1

(Xi − X̄N)2. (10)

Let us first compute the expectation:

E[σ̂2
N ] = E

[
1

N

N∑
i=1

(Xi − X̄N)2

]

= E

[
1

N

N∑
i=1

(Xi − µ− (X̄N − µ))2

]

=
1

N

N∑
i=1

E
[
(Xi − µ)2

]
− E

[
(X̄N − µ))2

]
= Var(X)− Var(X̄N) = σ2 − σ2

N
=

(N − 1)

N
σ2. (11)

Thus, with the sample variance we expect to obtain less dispersion that the dis-

persion in the population, except when N→∞.

We often propose an alternative statistic to measure dispersion in the sample,

the corrected sample variance , which is defined as:

s2
N ≡

N

N − 1
σ̂2
N =

1

N − 1

N∑
i=1

(Xi − X̄N)2. (12)

Easily we can check that E[s2
N ] = σ2. Therefore, unlike the sample variance,
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the corrected sample variance is centered around the population dispersion of the

data. This is a desirable property when we want to make inference about the

population, and, thus, s2
N is commonly used instead of σ̂2

N .

Even though we are not going to prove it (it is recommended as an exercise), it

is messy but easy to show that:

Var(s2
N) =

2σ4

N − 1
+
µ4 − 3σ4

N
. (13)

There exists an alternative measure of dispersion that has lower variance (i.e.

that is more precise) than s2
N :

σ̃2
N ≡

1

N

N∑
i=1

(Xi − µ)2. (14)

Trivially, we can check that E[σ̃2
N ] = σ2. To compute the variance of σ̃2

N , we only

need to compute E[(σ̃2
N)2]. To do so, define Zi ≡ Xi−mu, so that notation is less

messy:

E[(σ̃2
N)2] = E

( 1

N

N∑
i=1

Z2
i

)2
 =

1

N2
E

 N∑
i=1

Z4
i +

N∑
i=1

N∑
j=1 i 6=j

Z2
i Z

2
j


=

1

N2
[Nµ4 + (N2 −N)σ4] =

1

N
[µ4 − (N − 1)σ4]. (15)

And, hence:

Var(σ̃2
N) =

1

N
[µ4 − (N − 1)σ4]− σ4 =

1

N
[µ4 − σ4] < Var(s2

N). (16)

Therefore, this statistic would be preferred to the previous two to make inference

about the variance of the distribution of X because it is centered at σ2, like s2
N ,

but it is more precise. However, this is an unfeasible estimator , which means

that, in general, we cannot compute it, because we do not know µ.

III. Sampling form a normal population: χ2, t, and F distributions

Let (X1, ..., XN) be a random sample from the random variable X ∼ N (µ, σ2).

From previous chapters we know that, as a linear combination of normal random

variables, the sample mean is also normally distributed. And, from previous

section, we know the parameters of this normal distribution:

X̄N ∼ N (µ, σ2/N). (17)
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Also using the materials from previous chapters, we also know the distribution of

the following transformation:

Z ≡ X̄N − µ
σ/
√
N
∼ N (0, 1). (18)

This result will allow us to make inference about µ based on X̄N in future chapters,

provided that σ2 is known, because, given σ, the distribution of this statistic is

known (standard normal).

One alternative is to replace σ2 by s2
N , but s2

N is itself a random variable, and,

hence, the distribution above is altered. To see how, we first need to derive the

distribution of s2
N , and, to do that, we have to introduce some intermediate results:

1) Let Z̃ ≡ (Z̃1, ..., Z̃K)′ be a vector of K i.i.d. random variables, with Z̃i ∼
N (0, 1). Then, we say that W̃ = Z̃2

1 + ...+Z̃2
K = Z̃ ′Z̃ is distributed as a chi-

squared with K degrees of freedom : W̃ ∼ χ2
K . The degrees of freedom

are the number of independent squared standard normal distributions that

are adding. The support of this distribution is IR+. Interesting results for

this distribution are that E[W̃ ] = K and Var(W̃ ) = 2K (you are strongly

encouraged to prove them).

2) Let X̃ ∼ NN(0,Σ). Then, X̃ ′Σ−1X̃ ∼ χ2
N . To see it, decompose Σ =

Σ
1
2 Σ

1
2 as in previous chapter. Thus, X̃ ′Σ−1X̃ = (X̃ ′Σ−

1
2 )(Σ−

1
2 X̃) = Z̃ ′Z̃,

where Z̃ ∼ NN(0, I), which is equivalent to say that all its elements are

independently distributed as a standard normal. Given the definition of

the chi-squared distribution in the previous bullet, we therefore know that

Z̃ ′Z̃ ∼ χ2
N , completing the proof.

3) Let M be a size K×K idempotent (satisfies MM = M) and symmetric (sat-

isfies M ′ = M) matrix, with rank(M) = R ≤ K. Because it is idempotent,

M is singular (with the only exception of M = I), it is also diagonalizable,

and its eigenvalues are either 0 or 1. In particular, it can always be diago-

nalized as M = C ′ΛC such that C ′C = I, and Λ is a matrix that include

ones in the first R elements of the diagonal and zeros elsewhere. As a result,

the trace of M (the sum of its diagonal elements) is equal to its rank (and

thus always a natural number).

4) Let Z̃ ∼ NK(0, I), and M be a size K × K idempotent and symmetric

matrix with rank(M) = R ≤ K. Then Z̃ ′MZ̃ ∼ χ2
R. To prove it, consider

the diagonalization above: Z̃ ′C ′ΛCZ̃. If we let C be the equivalent to

Σ
1
2 above, Z̃C ∼ NK(0, C ′C) = NK(0, I). Therefore, Z̃ ′MZ̃ is a sum of
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R independent squared standard normals(given that Λ has R elements in

the diagonal that are equal to one, and the rest are equal to zero), and

thus Z̃ ′MZ̃ ∼ χ2
R.

5) Let Z̃ ∼ NK(0, I), and M be a size K × K idempotent and symmetric

matrix with rank(M) = R ≤ K. Also let P be a Q × N matrix such that

PM = 0. Then Z̃ ′MZ̃ and PZ̃ are independent. To prove it, note that,

as linear combinations of a standard normal vector, both MZ̃ and PZ̃ are

normal (thus, independence and absence of correlation are equivalent, as we

saw in Chapter 3). Additionally:

Cov(PZ̃,MZ̃) = P Cov(Z̃, Z̃)M = P Var(Z̃)M = PIM = PM = 0. (19)

(last step by assumption). BecauseM is idempotent and symmetric, Z̃ ′MZ̃ =

Z̃ ′M ′MZ̃ = (MZ̃)′MZ̃. Thus, Z̃ ′MZ̃ is a function of MZ̃ so, since MZ̃

and PZ̃ are independent, Z̃ ′MZ̃ and PZ̃ are independent.

We now can use these intermediate results to derive the distribution of s2
N .

Define ι ≡ (1, ..., 1)′ a size N vector of ones. Clearly, ι′ι = N , and, thus:

X̄ =
1

N

N∑
i=1

Xi = (ι′ι)−1ι′X ≡ PX. (20)

Similarly:

X − ιX̄ =


X1 − X̄
X2 − X̄

...

XN − X̄

 = (I − ι(ι′ι)−1ι′)X ≡MX. (21)

Trivially, the matrix M is symmetric and idempotent. Thus, we can write:

N∑
i=1

(Xi − X̄)2 = X ′M ′MX = X ′MX. (22)

This result implies that:

(N − 1)s2
N

σ2
=

∑N
i=1(Xi − X̄)2

σ2
=

1

σ2
X ′MX = Z̃ ′MZ̃. (23)

where Z̃i ≡ Xi−µ
σ

. The last equality is obtained by noting that ¯̃Z ≡ N−1
∑N

i=1 Z̃i =
1
σ
X̄ − µ

σ
, and thus:

MZ̃ = Z̃i − ¯̃Z = Z̃i +
µ

σ
−
(

¯̃Z +
µ

σ

)
=

1

σ
MX. (24)
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Therefore, since Z̃ ∼ NN(0, I) and rank(M) = tr(M) = N−1, we conclude that:1

W ≡ (N − 1)s2
N

σ2
∼ χ2

N−1. (25)

Finally, we introduce a new distribution: the Student-t. Let Z ∼ N (0, 1) and

W ∼ χ2
K , with Z and W being independent. Then:

t ≡ Z√
W
K

∼ tK , (26)

which we read t follows a Student-t distribution with K degrees of freedom. The

pdf of this distribution is symmetric with respect to zero, and its support is the

real line. Also, E[t] = 0 and Var(t) = K
K−2

for K > 2 (with K ≤ 2 then the

variance does not converge). When K→∞, the distribution is very similar to a

normal distribution.

The choice of Z and W as a notation for this definition are not coincidental.

The Z and W respectively defined in Equations (18) and (25) satisfy Z ∼ N (0, 1)

and W ∼ χ2
K , as we proved above. Thus, we only need to prove that they are

independent to be able to use the t-statistic from Equation (26) for our Z and

W . To do so, we start by checking that PM = 0:

PM = ι(ι′ι)−1ι′(I − ι(ι′ι)−1ι′) = ι(ι′ι)−1ι′ − ι(ι′ι)−1ι′ = 0. (27)

Also, we note that Z =
√
NPZ̃, with Z̃ ∼ NN(0, I). Thus, given that W =

Z̃ ′MZ̃, and using the intermediate result number 5 above, we conclude that PZ̃

and W are independent, as so are Z and W . Therefore:

Z√
W
N−1

=

X̄−µ
σ/
√
N√

(N−1)s2N/σ
2

N−1

=
(X̄ − µ)

s/
√
N
∼ tN−1. (28)

Hence, with this statistic, we can make inference about µ without knowing σ2.

There is another distribution that is useful to make inference about the variance.

Even though we will not enter into the details of it, let us define it. Let W1 and W2

be two independent random variables such that W1 ∼ χ2
K and W2 ∼ χ2

Q. Then:

F ≡ W1/K

W2/Q
∼ FK,Q, (29)

or, in words, the statistic F follows a F-distribution with K and Q degrees of

freedom. This distribution satisfies that E[F ] = Q
Q−2

(for Q > 2, otherwise the

1 To prove that tr(M) = N − 1, note that tr(IN ) = N , and tr(P ) = tr(ι(ι′ι)−1ι′) =
tr(ι′ι(ι′ι)−1) = tr(1) = 1 (since tr(AB) = tr(BA)), and, thus, tr(M) = tr(IN )− tr(P ) = N − 1.
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integral does not converge). Also, (tK)2 ∼ F1,K , since the numerator is one squared

normal (i.e. a chi-squared with one degree of freedom), and the denominator is a

chi-squared with K degrees of freedom divided by K.

IV. Bivariate and Multivariate Sampling

So far we have analyzed the case in which we sample from a univariate distri-

bution. However, we can also sample from a multivariate distribution. Let X

be a size K random variable with joint pdf equal to fX(x). Now, we extract a

random sample (X1, ..., XN) where Xi for i = 1..., N are random vectors. Given

the random sampling, the joint pdf is given by:

fX1...XN
(x1, ..., xk) =

N∏
i=1

fXi
(xi). (30)

Thus, we can define the following “joint” statistics:

• Sample mean: E[X].

• Sample variance-covariance matrix: 1
N

∑N
i=1(Xi − X̄)(Xi − X̄)′.

The sample variance-covariance matrix includes variances and covariances. We

showed above that the expectation of the sample variance was not equal to the

population variance, and thus we created a corrected variance. Should we do the

same thing with the covariance? The answer is yes. The proof is analogous to

the univariate case discussed above (one only needs to know that the expectation

of the matrix is the matrix of the expectations, as we also discussed, and then

operate individually).
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