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I. Joint and Marginal Distributions

In this chapter we will work with random vectors, which include a collection of

(scalar) random variables. We call these vectors multivariate random variables.

For them, we will define a joint cumulative density function. Let X1, ..., XK

denote a collection of K random variables. The joint cdf is defined as:

FX1...XK
(x1, ..., xK) ≡ P (X1 ≤ x1, X2 ≤ x2, ..., XK ≤ xK). (1)

When the random variables are discrete, we can define a joint probability mass

function given by:

P (X1 = x1, X2 = x2, ..., XK = xK). (2)

For example, consider the case of tossing two coins. Let Ω = {head, tail} ×
{head, tail}. Define the following two random variables:

X1 =

{
1 if ω = {(head, head)}
0 otherwise

X2 =

{
1 if ω = {(x, y) : {x} = {y}}
0 otherwise.

(3)

In words, X1 equals one if we obtain two heads, zero otherwise, and X2 equals

one if we obtain the same outcome with the two coins (either both heads or both

tails), zero otherwise. Note that, in this case, the pmf is:

P (X1 = x1, X2 = x2) =


2
4

= 1
2

if x1 = 0, x2 = 0
1
4

if x1 = 0, x2 = 1
1
4

if x1 = 1, x2 = 1

0 otherwise,

(4)
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(note the connection with the joint relative frequency in Chapter 1) and the cdf is:

FX1X2(x1, x2) =


0 if x1 < 0 or x2 < 0
1
2

if x1 ≤ 0 and 0 ≤ x2 < 1
3
4

if 0 ≤ x1 < 1, x2 ≥ 1

1 if x1 ≥ 1, x2 ≥ 1.

(5)

In the case of continuous variables, we have a joint probability density function,

fX1...XK
(x1, ..., xK), which is implicitly defined as:

FX1...XK
(x1, ..., xK) ≡

∫ x1

−∞
...

∫ xK

−∞
fX1...XK

(z1, ..., zK)dz1...dzK . (6)

A joint pdf satisfies the following properties:

• fX1...XK
(x1, ..., xK) ≥ 0 for all x1, ..., xK .

• FX1...XK
(∞, ...,∞) =

∫∞
−∞ ...

∫∞
−∞ fX1...XK

(z1, ..., zK)dz1...dzK = 1.

• Probabilities:

– P (a1 ≤ X1 ≤ b1, ..., aK ≤ XK ≤ bk) =
∫ b1
a1
...
∫ bK
aK

fX1...XK
(z1, ..., zK)dz1...dzK .

– P (X1 = a1, ..., XK = aK) = 0.

– P (X1 = a, a2 ≤ X2 ≤ b2, ..., aK ≤ XK ≤ bK) = 0.

• ∂K

∂x1...∂xK
FX1...XK

(·) = f(·).

For example, the following is a pdf of a bivariate continuous random variable:

fXY (x, y) =

{
3
11

(x2 + y) if 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.
(7)

In this example, the cdf is:

FXY (x, y) =

{∫ min{2,x}
0

∫ min{1,y}
0

3
11

(x2 + y)dydx if x ≥ 0, y ≥ 0

0 otherwise

=

{
3
11

[
min{1,y}min{8,x3}

3
+ min{1,y2}

2
min{2, x}

]
if x ≥ 0, y ≥ 0

0 otherwise,
(8)

which satisfies FXY (∞,∞) = 3
11

[
8
3

+ 1
2
2
]

= 1.

Similarly, we can define the marginal cdf, which is given by:

Fi(x) ≡ P (Xi ≤ x) = P (X1 ≤ ∞, ..., Xi ≤ x, ..., XK ≤ ∞)

= FX1...XK
(∞, ..., x, ...,∞), (9)
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and, either the marginal pmf (discrete case), defined as:

P (Xi = x) ≡
∑
x1

...
∑
xK

P (X1 = x1, ...Xi = x, ..., XK = xK), (10)

or the marginal pdf (continuous case), defined as:

fi(x) =

∫ ∞
−∞

...

∫ ∞
−∞

fX1...XK
(z1, ..., x, ..., zK)dz1...dxi−1dxi+1...dzK . (11)

Note that the marginal cdf can also be defined as:

Fi(x) =

∫ x

−∞
fi(z)dz. (12)

In our discrete example from above, the marginal pmf for X1 is:

P (X1 = x) =


3
4

if x = 0
1
4

if x = 1

0 otherwise.

(13)

Note that this is still a well defined probability function for the variable X1, as it

satisfies the three axioms of a probability function.

In the continuous example above, the marginal pdf for X is:

fX(x) =

{∫ 1

0
3
11

(x2 + y)dy = 3
11

(
x2 + 1

2

)
if 0 ≤ x ≤ 2

0 otherwise,
(14)

which is a well defined pdf, as it integrates to 1, and the marginal cdf is:

FX =


1 if x ≥ 2∫ x

0
3
11

(
x2 + 1

2

)
= 3

11

(
x3

3
+ x

2

)
if 0 ≤ x ≤ 2

0 otherwise.

(15)

II. Conditional Distributions and Independence

A. Conditional probability

Let us first introduce the concept of conditional probability . In probability

theory, a conditional probability measures the probability of an event given that

another event has occurred. Let A and B be two events included in the σ-algebra

of the sample space. The probability thatA occurs given that B occurred, denoted

by P (A |B) is formally defined as:

P (A |B) ≡ P (A∩B)

P (B)
. (16)
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To illustrate it, consider the example of tossing two coins. We want to know

that is the probability of obtaining two heads, conditional on the fact that the

first coin already delivered a head. In this case, the sample space would be

Ω = {{head, head}, {head, tail}, {tail, head}, {tail, tail}}, the set A would be

A = {head, head}, the set B would be B = {{head, tail}, {head, head}}, and

the intersection of the two would be A∩B = {head, head}. Thus, P (A∩B),

assuming coins are regular and, hence, events are equally likely, would be equal

to 1
4
. Likewise, P (B) would be 2

4
. Hence, P (A |B) = 1

2
.

This definition can be reversed to obtain the probability of B given that A occur,

as they are both connected by P (A∩B):

P (A∩B) = P (A |B)P (B) = P (B |A)P (A)⇒ P (B |A) =
P (A |B)P (B)

P (A)
. (17)

This identity is called the Bayes’ rule (a.k.a. Bayes’ law, or Bayes’ theorem).

The conditional probability allows us to talk about the independence of two

events. We say that events A and B are independent if the conditional and

marginal probabilities coincide. That is:

• P (A |B) = P (A)

• P (B |A) = P (B)

• P (A∩B) = P (A)P (B).

Notice that these three conditions are equivalent, so we only need to check whether

one of them holds.

B. Conditional distribution

Let X be a random variable, and let A be an event, with P (A) 6= 0. The

conditional cdf of X given A occurred is:

FX| A(x) ≡ P (X ≤ x| A) =
P (X ≤ x ∩ A)

P (A)
. (18)

Very often, the event we are conditioning on is represented by a random vari-

able(s), so that both X (which itself could also be a scalar or a random vector)

and this random variable(s) form a random vector. In general, let X1 denote the

partition of the random vector that is our outcome of interest, and X2 be the

partition that includes the random variables we are conditioning on. The cdf of

X1 conditional on X2 = x2 is defined as:

FX1|X2(x|x2) ≡

{
P (X1 ≤ x|X2 = x2) if X2 is discrete

limh→ 0 P (X1 ≤ x|x2 + h ≥ X2 ≥ x2) if X2 is continuous.

(19)
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The distinction between continuous and discrete is because we require that the

marginal probability of the condition is not equal to zero for it to be defined. In

the discrete case, the pmf is:

P (X1 = x|X2 = x2) =
P (X1 = x,X2 = x2)

P (X2 = x2)
. (20)

Similarly, we can develop an analogous definition for the case of a continuous

random vector. The conditional pdf of X1 conditional on X2 is:

fX1|X2(x|x2) ≡
fX1X2(x, x2)

fX2(x2)
, (21)

where fX1|X2 denotes the conditional pdf, fX1X2 is the joint pdf, and fX2 is the

marginal pdf for X2. Note that we can use this expression to factorize the joint

pdf, in a Bayes’ rule fashion, as follows:

fX1X2(x1, x2) = fX1|X2(x1|x2)fX2(x2) = fX2|X1(x2|x1)fX1(x1). (22)

We use these factorizations very often in econometrics.

We can also use Equation (20) to reformulate the conditional cdf for a continuous

random vector as:

FX1|X2(x|x2) =

∫ x

−∞
fX1|X2(z|x2)dz (23)

Note that the conditional pdf is a well defined pdf:

• fX1|X2(x1|x2) ≥ 0.

•
∫∞
−∞ fX1|X2(x, x2)dx = 1.

• ∂
∂x
FX1|X2(x|x2) = fX1|X2(x|x2).

Also note that, if X1 is a random vector of size K1, the above integrals and

differentials are K1-variate.

To illustrate all this, consider the example used in previous section (Equa-

tion (7)). The conditional pdf of Y given X is:

fY |X(y|x) =
fXY (x, y)

fX(x)
=

3
11

(x2 + y)
3
11

(
x2 + 1

2

) =
x2 + y

x2 + 1
2

, (24)

for the relevant interval, and zero otherwise. Now we can use this expression to

easily compute, for example:

P (0 ≤ y ≤ 1/2|x = 1) =

∫ 1/2

0

1 + y

1 + 1
2

dy =
2

3

(
y +

y2

2

)]1/2
0

=
5

12
, (25)
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where we are abusing of notation by stating x = 1 instead of the limit limh→ 0 x ∈
[1, 1 + h]. Similarly, we can compute:

P

(
0 ≤ y ≤ 1

2

∣∣∣∣12 ≤ x ≤ 3

2

)
=

∫ 3
2

1
2

∫ 1
2

0

3

11

(
x2 + y

)
dydx∫ 3

2

1
2

3

11

(
x2 +

1

2

)
dx

. (26)

C. Independence

We say that two random variables X1 and X2 are independent if and only if:

• The conditional distributions f(X1|X2) and f(X2|X1) do not depend on the

conditioning variable, X2 and X1 respectively.

• FX1X2(x1, x2) = FX1(x1)FX2(x2) for all X1 and X2.

• P (x1 ∈ AX1 ∩x2 ∈ AX2) = P (x1 ∈ AX1)P (x2 ∈ AX2).

The three conditions are equivalent. Note, for example, that the third condition

implies that we can formulate the conditional probability as:

P (x1 ∈ AX1 |x2 ∈ AX2) =
P (x1 ∈ AX1 ∩x2 ∈ AX2)

P (x2 ∈ AX2)
(27)

=
P (x1 ∈ AX1)P (x2 ∈ AX2)

P (x2 ∈ AX2)

= P (x1 ∈ AX1),

which does not depend on X2 (as the first condition indicates. Likewise, the

second condition implies:

fX1X2(x1, x2) =
∂2FX1X2(x1, x2)

∂X1∂X2

=
∂FX1(x1)

∂X1

∂FX2(x2)

∂X2

= fX1(x1)fX2(x2). (28)

Thus, similarly to what we obtained in Equation (27), fX1|X2(x1|x2) = fX1(x1) for

any x1 and x2. As a corollary, we can state that (X1, ..., XK) are independent if

and only if FX1...XK
(x1, ..., xK) =

∏K
i=1 Fi(xi).

III. Transformations of Random Variables

Let (X1, ..., XK)′ be a size K vector of independent random variables, and

g1(·), ..., gK(·) be K functions such that {Yi = gi(Xi) : j = 1, ..., K} are ran-

dom variables, then (Y1, ..., YK)′ is also a vector of independent random variables.
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To see it, note that the cdf of (Y1, ..., YK)′ is:

FY1...YK
(y1, ..., yK) = P (Y1 ≤ y1, ..., YK ≤ yK) (29)

= P (X1 ≤ g−11 (y1), ..., XK ≤ g−1K (yK))

= FX1...XK
(g−11 (y1), ..., g

−1
K (yK))

=
K∏
i=1

FXi
(g−11 (yi)),

where the last equality results from the fact that X1, ..., XK are independent, and

that gi(Xi) only takes Xi as an argument, and not Xj for j 6= i.

Finally, let X be a size K vector of continuous random variables with pdf fX(x),

and let K-dimensional function Y = g(X) with a unique inverse X = g−1(Y ), and:

det

(
∂g−1(Y )

∂Y ′

)
6= 0. (30)

Then, the joint pdf of Y = g(X) is:

fY (y) = fX(g−1(y))

∣∣∣∣ det

(
∂g−1(Y )

∂Y ′

) ∣∣∣∣. (31)

IV. Multivariate Normal Distribution

The multivariate normal distribution is defined over a random vector X =

(X1, ..., XK)′ by the following pdf:

fX(x) = (2π)−
K
2 det(ΣX)−

1
2 exp

(
−1

2
(x− µX)′Σ−1X (x− µX)

)
, (32)

where ΣX is a K × K positive definite and symmetric matrix of parameters,

and µX is a size K × 1 vector of parameters. The fact that a random vector

follows a multivariate normal is expressed as X ∼ NK(µX ,ΣX). Thus, the normal

distribution is completely characterized by K + (1
2
K(K + 1)) (the second term

comes from the fact that ΣX is symmetric).

The multivariate normal distribution is obtained as a linear transformation of a

vector of independent random variables that are (standard) normally distributed.

Formally, let Z = (Z1, ..., ZK)′ be a vector of independent variables such that

{Zi ∼ N (0, 1) : j = 1, ..., K}. Define the random vector X as X ≡ µX + Σ
1
2
XZ,

where µX is a size K vector, and Σ
1
2
X is a K ×K nonsingular matrix that satisfies(

Σ
1
2
X

)(
Σ

1
2
X

)′
= ΣX . Then, implementing the result in Equation (31), we can see
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that X ∼ N (µX ,ΣX):

φk(z) =
∏K

i=1 φ(zi) = (2π)−
K
2 exp

(
−1

2
z′z
)

X = µX + Σ
1
2
XZ ⇔ Z = Σ

− 1
2

X (x− µX)∣∣ det
(

Σ
− 1

2
X

) ∣∣ = det(ΣX)−
1
2

⇒
fX(x) = (2π)−

K
2 det(ΣX)−

1
2×

exp
(
−1

2
(x− µX)′Σ−1X (x− µX)

)
.

(33)

Using a similar derivation we can prove that Y = a+BX ∼ N (a+BµX , BΣXB
′).

V. Covariance, Correlation, and Conditional Expectation

A. Covariance and Correlation between Two Random Variables

Let (X1, X2)
′ be two random variables with expectations µX1 ≡ E[X1] and

µX2 ≡ E[X2]. The covariance between X1 and X2 is defined as:

Cov(X1, X2) ≡ E[(X1 − µX1)(X2 − µX2)]. (34)

Note that the variance is a special case of covariance: the one of a variable X

with itself. Some properties of the covariance are:

• Cov(X1, X2) = E[X1X2]− E[X1]E[X2].

• Cov(X1, X2) = Cov(X2, X1).

• Cov(X,X) = Var(X).

• Cov(c,X) = 0.

• Cov(aX1, bX2) = abCov(X1, X2).

• Cov(X1 +X2, X3) = Cov(X1, X3) + Cov(X2, X3).

• Var(X1 +X2) = Var(X1) + Var(X2) + 2 Cov(X1, X2).

The magnitude of the covariance depends on the units of measure, the same

way than the descriptive statistic counterpart seen in Chapter 1 did. That is why

we define the correlation coefficient as:

ρX1X2 ≡
Cov(X1, X2)√

Var(X1) Var(X2)
. (35)

The Cauchy-Schwarz inequality implies that ρ2X1X2
≤ 1, or, in other words,

that coefficient ranges between -1 and 1. To prove it, define U ≡ X1 − µX1 and

V ≡ X2 − µX2 , and the function w(t) = E[(U − tV )2] ≥ 0. Because w(t) is a

quadratic function in t, (E[V 2])t2 − (2E[UV ])t + E[U2], it either has no roots

or one root. This implies the discriminant (for at2 + bt + c, the discriminant

is b2 − 4ac) has to be either zero (one root for w(t)) or negative (no roots).
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Thus, (2E[UV ])2 − 4E[V 2]E[U2] ≤ 0, which implies E[UV ]2 ≤ E[V 2]E[U2], from

which the result follows trivially. In the case when ρ2X1X2
= 1, there exists a

value for t∗ such that w(t∗) = 0, which is equivalent to say that U = t∗V , i.e.

X1 − µX1 = t∗(X2 − µX2), or, in words, X1 is a linear transformation of X2.

B. Expectation and Variance of Random Vectors

Let X = (X1, ..., XK)′ be a size K vector of random variables. The expectation

of the random vector X is defined as:

E[X] ≡
∫ ∞
−∞

xdFX1...XK
(x1, ..., xK) =

E[X1]
...

E[XK ]

 , (36)

where we make use of the Rienman-Stiljes integral. Similarly, we can define the

expectation of a transformation of X as:

E[g(X)] ≡
∫ ∞
−∞

g(x)dFX1...XK
(x1, ..., xK). (37)

A corollary of this is that, since g(X) = (c1, ..., cK)X = c1X1 + ...+ cKXK , we can

see that E[c1X1 + ...+ cKXK ] = c1 E[X1] + ...+ cK E[XK ]. Moreover, even though

we cannot derive a general result for the expectation of the product of random

variables, in the special case where the random variables are independent, we can

establish that:

E[X1X2] =

∫ ∞
−∞

x1x2dFX1X2(x1, x2) (38)

=

∫ ∞
−∞

∫ ∞
−∞

x1x2fX1X2(x1, x2)dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

x1x2fX1(x1)fX2(x2)dx1dx2

=

∫ ∞
−∞

x1fX1(x1)dx1

∫ ∞
−∞

x2fX2(x2)dx2

= E(X1)E(X2).

Thus, note that the fact that two variables are independent imply that the ex-

pectation of the product is the product of the expectations. However, the reverse

implication is not true.
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The variance-covariance matrix is defined as:

Var(X) ≡ E[(X − µX)(X − µX)′] = (39)

=


Var(X1) Cov(X1, X2) . . . Cov(X1, XK)

Cov(X2, X1) Var(X2) . . . Cov(X2, XK)
...

...
. . .

...

Cov(XK , X1) Cov(XK , X2) . . . Var(XK)

 ,

where µX ≡ E[X]. This matrix is symmetric (because Cov(Xi, Xj) = Cov(Xj, Xi)),

and positive-semidefinite (which is the equivalent to say that the variance is non-

negative). To prove the last, recall that a matrix M is positive-semidefinite if, for

all non-zero vectors c ∈ IRK , c′Mc ≥ 0. In the case of the variance-covariance

matrix:

c′Var(X)c = c′ E[(X − µX)(X − µX)′]c = E[c′(X − µX)(X − µX)′c] = E[Y 2] ≥ 0,
(40)

where we make use of the fact that the linear combination c′(X − µX) delivers a

scalar random variable.

Retaking the example of the multivariate normal distribution, E[X] = µX , and

Var(X) = ΣX . We can write ΣX as:

ΣX =


σ2
1 ρ12σ1σ2 . . . ρ1Kσ1σK

ρ12σ1σ2 σ2
2 . . . ρ2Kσ2σK

...
...

. . .
...

ρ1Kσ1σK ρ2Kσ2σK . . . σ2
K

 . (41)

It can be proved that det Σ > 0 ⇔ −1 < ρ < 1. Thus, if two variables are

perfectly correlated, we cannot write its joint normal density (which makes sense,

given that one variable is a linear transformation of the other).

C. Conditional Expectation

The conditional expectation of a continuous random variable X1 given X2

is defined as:

E[X1|X2 = x2] ≡
∫ ∞
−∞

x1fX1|X2(x1|x2)dx1. (42)

If X1 is discrete, it is analogously defined as:

E[X1|X2 = x2] ≡
∑

x1∈(−∞,∞)

x1P (X1 = x1|X2 = x2). (43)
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In general, using the Rienman-Stiltjes integral, we can write:

E[X1|X2 = x2] ≡
∫ ∞
−∞

x1dFX1|X2(x1|x2). (44)

The conditional variance is defined as:

Var[X1|X2 = x2] ≡
∫ ∞
−∞

(x1 − E[X1|X2])
2dFX1|X2(x1|x2), (45)

which can be expressed as E[X2
1 |X2 = x2] − E[X1|X2 = x2]

2 (the derivation is

analogous to the one for the unconditional variance).

Since we can compute the conditional expectation for every possible value

that X2 can take, we can simply denote E[X1|X2], which is a function of X2.

Let h(X2) ≡ E[X1|X2] denote this function. We can compute E[h(X2)] (i.e.

E[E[X1|X2]]) integrating over the marginal distribution of X2:

E[E[X1|X2]] =

∫ ∞
−∞

h(X2)fX2(x2)dx2 (46)

=

∫ ∞
−∞

(∫ ∞
−∞

x1fX1|X2(x1|x2)dx1
)
fX2(x2)dx2

=

∫ ∞
−∞

∫ ∞
−∞

x1fX1|X2(x1|x2)fX2(x2)dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

x1fX1X2(x1, x2)dx1dx2

= E[X1]. (47)

This result is known as the law of iterated expectations , and, even though we

derived it for continuous variables, it also applies to discrete ones.

D. Revisiting Independence

In Section II.C above we defined the concept of independence, based on the

distributions of the variables. Now, given the inputs in this section, we can revise

the notion of independence, and define alternative degrees of independence. In

particular, from strongest to weakest notion of independence (i.e. the first implies

the second, which implies the third, but the reverse is not true), we define:

• Independence : FX1|X2(x1|x2) = FX1(x1) (or any of the equivalent specifi-

cations defined in Section II.C).

• Mean independence : X1 is mean independent of X2 if E[X1|X2] = E[X1]

for all values of X2. Unlike the other two, this relation is not symmetric,

as X2 being mean independent of X1 does not necessarily imply that X1 is

mean independent of X2.
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• Absence of correlation : Cov(X1, X2) = 0 = ρX1X2 .

To illustrate all this, consider a simple example. Let X1 and X2 be two discrete

random variables, with pmf defined by the following table:

X1\X2 1 2 3

2 1/12 1/6 1/12

3 1/6 0 1/6

4 0 1/3 0

In this example:

F (X1 = x1|X2 = 1) =


1/12

1/12+1/6
= 1

3
if x1 = 2

1/6
1/12+1/6

= 2
3

if x1 = 3

0 if x1 = 4

(48)

F (X1 = x|X2 = 2) =


1/6

1/6+1/3
= 1

3
if x1 = 2

0 if x1 = 3
1/3

1/6+1/3
= 2

3
if x1 = 4

F (X1 = x|X2 = 3) =


1
3

if x1 = 2
2
3

if x1 = 3

0 if x1 = 4,

so clearly there is no independence, as F (X1|X2) depends on X2. Now, to check

whether there is mean independence, we have to compute the conditional expec-

tations:

E[X1|X2 = x2] =


2 ∗ 1

3
+ 3 ∗ 2

3
= 8

3
if x2 = 1

2 ∗ 1
3

+ 4 ∗ 2
3

= 10
3

if x2 = 2

2 ∗ 1
3

+ 3 ∗ 2
3

= 8
3

if x2 = 3

(49)

E[X2|X1 = x1] =


1 ∗ 1

4
+ 2 ∗ 1

2
+ 3 ∗ 1

4
= 2 if x1 = 2

1 ∗ 1
2

+ 3 ∗ 1
2

= 2 if x1 = 3

2 if x1 = 4,

so X2 is mean independent of X1, but X1 is not mean independent of X2. This

implies that Cov(X1, X2) = 0. It is easy to show. Applying the law of iter-

ated expectations, one can trivially see that Cov(X1, X2) = Cov(X1,E[X2|X1]) =

Cov(X1,E[X2]) = 0.

Another example is the multivariate normal distribution. In this case, indepen-

dence, mean independence, and absence of correlation are equivalent, and all three

occur (for the relation between Xi and Xj) if and only if ρij = 0. To illustrate it,

we can think of the bivariate normal, but it is trivially extended generally for the

12



multivariate normal of any dimension. Independence is proved by checking that,

when ρ is equal to zero, the joint density can be factorized as the product of the

two marginals. Additionally, we can prove that the conditional distribution of X1

given X2 is:

X1|X2 ∼ N
(
µ1 + ρ12

σ1
σ2

(X2 − µ2), σ
2
1(1− ρ212)

)
, (50)

which implies mean independence if and only if ρ12 = 0 (provided that X1 is not

a degenerate random variable, and thus σ1 6= 0). Finally, we prove that absence

of correlation is equivalent to ρ12 = 0 from the definition of ρ12.

VI. Linear Prediction

A. Expectations and Prediction

The conditional expectation (and the expectation in general) can be written as

the result of a minimization process. We already pointed out something similar

for the sample mean in Chapter 1. The expectation is the optimal predictor in

the sense that it minimizes the expected quadratic loss. More formally, let h(X)

denote a prediction of a variable Y based on the information in X, and define

U ≡ Y − h(X) the prediction error. The conditional expectation satisfies:

E[Y |X] = arg min
h(X)

E[(Y − h(X))2] = arg min
h(X)

E[U2]. (51)

This property is trivial to prove by checking that, for any other function m(X),

E[(Y − m(X))2] = E
[
{(y − E[y|X]) + (E[Y |X]−m(x))}2

]
≥ E[(y − E[y|X])2].

By extension, E[Y ] is the optimal constant predictor .

This notion of prediction is interesting because it allows us to separate the

variation in Y that can be explained by X from the one that cannot. A way of

quantifying to what extent a variable Y is explained by X compared to other

factors is through the variance. The variance of Y can be decomposed as:

Var(Y ) = Var(E[Y |X]) + Var(U) + 2 Cov(E[Y |X], U), (52)

where we used the fact that h(X) = E[Y |X] is the optimal predictor, and, thus,

Y ≡ E[Y |X] + U . To compute the Var(U), we need E(U2) and E[U ]2. For the

second term, we can use the law of iterated expectations:

E[U |X] = E[Y − E[Y |X]|X] = E[Y |X]− E[Y |X] = 0 ⇒ E[U ] = 0. (53)

Thus:

Var(U) = E[U2] = E[E[U2|X]] = E[E[(Y − E[Y |X])2|X]] = E[Var(Y |X)]. (54)
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Finally, using the result in (53), the last term in Equation (52) is:

Cov(E[Y |X], U) = E(E[Y |X]U) = E(E[Y |X]E[U |X]) = 0. (55)

Hence, we can write:

Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)]. (56)

The first term of the right-hand-side of the above expression is the variation of Y

that is explained by X. The second term gives the expected variation of Y for a

given value of X. Hence, we can introduce the population R2:

R2 ≡ Var(E[Y |X])

Var(Y )
= 1− E[Var(Y |X)]

Var(Y )
. (57)

This coefficient ranges between 0 and 1, and its interpretation is the fraction of the

variation in Y that is explained by the variation in the prediction of Y given X.

Thus, it is a measure of the goodness of fit of the model.

B. Optimal Linear Predictor

Now we focus on the optimal linear predictor . Given a random vector

(Y,X), the optimal linear predictor of Y givenX is the function E∗[Y |X] ≡ α+βX

that satisfies:

(α, β) = arg min
(a,b)

E[(Y − a− bX)2]. (58)

Solving for the first order conditions:

β =
Cov(X, Y )

Var(X)
, α = E[Y ]− β E[X], (59)

and, hence, it is equal to:

E∗[Y |X] = E[Y ] +
Cov(X, Y )

Var(X)
(X − E[X]), (60)

The optimal linear predictor is optimal (in the sense of minimal quadratic error)

in the class of linear predictors. Thus, when the conditional expectation function

is linear, the optimal linear predictor is equal to the conditional expectation.

Using the optimal linear predictor we can compute a goodness of fit statistic

that is analogous to the population R2, defined in Equation (57):

ρ2XY ≡
Var(E∗[Y |X])

Var(Y )
= β2Var(X)

Var(Y )
=

Cov(X, Y )2

Var(X) Var(Y )
, (61)
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and, hence, the notation ρ2XY . Notice that 0 ≤ ρ2XY ≤ R2. Also note that, if X is

itself a random vector, then:

β = Var(X)−1 Cov(X, Y ), α = E[Y ]− β′ E[X]. (62)

Let us introduce some properties of the optimal linear predictor:

• E∗[c|X] = c.

• E∗[cX|X] = cX.

• E∗[Y + Z|X] = E∗[Y |X] + E∗[Z|X].

• E∗[Y |X1] = E∗[E∗[Y |X1, X2]|X1].

An interesting case in which the optimal predictor is linear (i.e. the conditional

expectation function of Y given X is linear in X) is the multivariate normal

distribution (e.g. see the bivariate case in Equation (50)).
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