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I. Preliminaries: An Introduction to Set Theory

We start this chapter with the introduction of some tools that we are going

to use throughout this course (and you will use in subsequent courses). First,

we introduce some definitions, and then describe some operators and properties

of these operators. Consider a collection of objects, including all objects under

consideration in a given discussion. Each object in our collection is an element

or a point. The totality of all these elements is called the space , also known as

the universe, or the universal set, and is denoted by Ω. We denote an element of

the set Ω by ω. For example, a set can be all the citizens of a country, or all the

points in a plane (i.e. Ω = IR2, and ω = (x, y) for any pair of real numbers x and

y). A partition of the space Ω is called a set , which we denote by calligraphic

capital Latin letters, with or without subscripts. When we opt for the second, we

define the catalog of all possible incides as the index set , which we denote by

Λ (for example, if we consider the sets A1, A2, and A3, then Λ = {1, 2, 3}). A

Venn diagram is a diagram that shows all possible logical relations between a

finite collection of sets. For example, we would represent the sets of capital letters

in the Latin, Greek and Cyrillic scripts as:
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To express that an element ω is part of a set A, we write w ∈ A, and to state

the opposite, we write w /∈ A. We can define sets by explicitly specifying all its

elements (e.g. A = {1, 2, 3, 4, 5, 6}), or implicitly, by specifying properties that

describe its elements (e.g. A = {(x, y) : x ∈ IR, y ∈ IR+}). The set that includes

no elements is called the empty set , and is denoted by ∅.

Now we define a list of operators for sets:

• Subset : when all elements of a set A are also elements of a set B we say

that A is a subset of B, denoted by A ⊂ B (“A is contained in B”) or B ⊃ A
(“B contains A”).

• Equivalent set: two sets A and B are equivalent or equal, denoted A = B
if A ⊂ B and B ⊂ A.

• Union : the set that consists of all points that are either in A, in B, or in

both A and B is defined to be the union between A and B, and is denoted

by A∪B. More generally, let Λ be an index set, and {Aλ} ≡ {Aλ : λ ∈ Λ},
a collection of subsets of Ω indexed by Λ. The set that consists of all points

that belong to Aλ for at least one λ ∈ Λ is called the union of the sets {Aλ},
denoted by ∪

λ∈Λ
Aλ. If Λ = ∅, we define ∪

λ∈∅
Aλ ≡ ∅.

• Intersection : the set that consists of all points that are both in A and in

B is defined to be the intersection between A and B, and is written A∩B
or AB. More generally, with the notation from the previous point, the set

that consists of all points that belong to Aλ for every λ ∈ Λ is called the

intersection of the sets {Aλ}, and is denoted by ∩
λ∈Λ
Aλ. If Λ = ∅, we define

∩
λ∈∅
Aλ ≡ Ω.

• Set difference : the set that consists of all points in A that are not in B is

defined to be the set difference between A and B, and is denoted by A\B
(or A−B when the context is clear).

• Complement : the complement of a set A with respect to the space Ω,

denoted by Ac (or A) is the set that consists of all points that are in the

space Ω and are not in A, that is Ω\A.

• Disjoint/mutually exclusive sets : A ⊂ Ω and B ⊂ Ω are defined to be

mutually exclusive or disjoint if A∩B = ∅. Subsets {Aλ} are defined to be

mutually exclusive is Aλ ∩Aλ′ = ∅ for every λ and λ′ such that λ 6= λ′.

• Cartesian product : the set of all possible ordered pairs (a, b) where a ∈ A
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and b ∈ B is defined to be the Cartesian product of A and B, and is denoted

by A×B.

• Power set : the power set of a set A, denoted by 2A (or P(A)), is the set of

all possible subsets of A, including the empty set ∅, and A itself. For exam-

ple, if A = {x, y, z}, 2A = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
If A includes n elements, 2A includes 2n elements (hence its notation).

• Finite and countable sets: a finite set is a set that has a finite number

of elements (and an infinite set is a set with an infinite number of elements).

A countable set is a set with the same number of elements as some subset

of the set of natural numbers (can be finite or infinite).

• Sigma-algebra : a sigma algebra (or σ-algebra), Σ, on a set A is a subset

of the power set of A, Σ ⊂ 2A, that satisfies three properties: i) it includes

A; ii) if the subset B ⊂ A is included in Σ, Bc is also included; and iii) if

a countable collection of subsets {Aλ} is included, its union ∪
λ∈Λ
Aλ is also

included.

Next we list some properties of the operators defined above. Some of the proofs

will be done in class, others will be listed as exercises, and others are recommended

to be done at own initiative. The properties are:

• Commutative laws : A∪B = B∪A, and A∩B = B∩A.

• Associative laws : A∪(B∪C) = (A∪B)∪C, andA∩(B∩C) = (A∩B)∩C

• Distributive laws: A∩(B∪C) = (A∩B) ∪ (A∩C), and A∪(B∩C) =

(A∪B) ∩ (A∪C).

• A∩Ω = A; A∪Ω = Ω; A∩∅ = ∅; A∪∅ = A.

• A∩Ac = ∅; A∪Ac = Ω; A∩A = A∪A = A.

• (Ac)c = A.

• DeMorgan’s laws : (A∪B)c = Ac ∩Bc and (A∩B)c = Ac ∪Bc. Likewise,(
∪
λ∈Λ
Aλ
)c

= ∩
λ∈Λ
Acλ, and

(
∩
λ∈Λ
Aλ
)c

= ∪
λ∈Λ
Acλ.

• A\B = A∩Bc and (A\B)c = Ac ∪B.

• (A∩B) ∪ (A∩Bc) = A and (A∩B) ∩ (A∩Bc) = ∅.

• A ⊂ B ⇒ A∩B = A and A∪B = B.

• A×B 6= B×A.
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II. Statistical Inference, Random Experiments, and Probabilities

In Chapter 1 we started from a data sample, and we learned how to describe

these data. Now we want to make general claims about the population the sample

is meant to represent. These general claims are known as statistical inference .

In order to do inference, we need a statistical model, this is, a data generating

process. A random experiment or trial is a conceptual description of the

process that generated the data that we observe. We call it random because, even

though the process can be replicated under similar conditions, results are not

known with certainty (there is more than one possible outcome). This is unlike

a deterministic experiment, which has only one possible outcome. For example,

a random experiment could be to roll a dice or toss a coin; the outcome of this

experiment is random because if we repeat it (roll the dice again, or toss the coin

again) we are not necessarily obtain the same result.

The probability space is a mathematical construct that formalizes a random

experiment. The probability space consists of three parts:

• A sample space Ω, which is the set of all possible outcomes.

• A σ-algebra , F ⊂ 2Ω, which is a set of events, F = {A1,A2, ...}, where

each event Aλ ⊂ Ω is a subset of Ω that contains zero or more outcomes. An

event Aλ is said to occur if the experiment at hand results in an outcome ω

that belongs to Aλ.

• A probability measure P : F → [0, 1], which is a function on F that

satisfies three axioms:

1) P (A) ≥ 0 for every A ∈ F .

2) P (Ω) = 1 (Ω is sometimes called the sure event)

3) If A1,A2, ... is a sequence of mutually exclusive events in F , then

P (∪∞λ=1Aλ) =
∑∞

λ=1 P (Aλ).

The third axiom has two implications. The first is that P (∅) = 0. The sec-

ond is that if we partition the space Ω in mutually exclusive events A1,A2, ...

the sum of the probabilities of all mutually exclusive events that form Ω

equals 1.

For example, tossing a coin is a random experiment. The probability space

of this experiment is as follows. The sample space is a set that includes heads

and tails: Ω = {head, tail}. The σ-algebra is the set of all possible combinations
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of outcomes, which is {{∅}, {head}, {tail}, {Ω}}. An event is an element of the

σ-algebra, i.e. one of the four listed subsets. And the probability measure is the

function that transforms this event into a probability, expressed between 0 and

1. The probability measure satisfies the three axioms: the probability of each of

the four events is greater or equal than zero, it is sure that the outcome of the

experiment will be either heads or tails, and if we consider the three mutually

exclusive sets of the σ-algebra {∅}, {heads}, and {tails}, the probability of the

union of the three (which, since the union of the three is Ω, is equal to 1) is equal

to the sum of the probabilities of the three events.

III. Finite Sample Spaces and Combinatorial Analysis

In the previous section, we generalized the concept of probability for any sample

space. Now we focus on a particular type of sample spaces: those with a finite

number of points, Ω = {ω1, ..., ωN}. Let the operator N(A) denote the number of

elements of a finite set A. We define N ≡ N(Ω) as the total number of possible

outcomes of a random experiment with a finite number of outcomes.

Initially, consider the case of a finite sample space with equally likely points. In

this case, the probability of each outcome is 1/N . However, we can also implement

the axiomatic definition of probability introduced in the previous section. Define

a probability function P (·) over a finite sample space that satisfies two properties:

• P ({ω1}) = P ({ω2}) = ... = P ({ωN}).

• If A ⊂ Ω includes N(A) elements, then P (A) = N(A)/N .

We shall call such function an equally likely probability function. It is trivial to

check that an equally likely probability function satisfies the three axioms and

hence is a probability function.

In this environment, the only problem left in determining the probability of a

given event is a problem of counting: count the number of points in A, N(A) and

the number of points in Ω, N . For example consider the experiment of tossing a

coin twice. Let Ω = {head, tail}×{head, tail} = {(z1, z2) : z1 ∈ {head, tail}, z2 ∈
{heads, tail}}. There are N = 2 · 2 = 4 sample points. It seems reasonable to

attach a probability of 1
4

to each point. Let A = {at least one head}. Then,

A = {(head, tail), (tail, head), (head, head)}, and P (A) = 3
4
.

In this example, counting was quite simple. However, in higher dimensional

cases, we may need to count in a systematic way. For that purpose, it is useful

to introduce an important tool: combinatorial analysis . Specifically, let us

introduce the following definitions:
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• n factorial: a product of a positive integer n by all the positive integers

smaller than it [n! ≡ n(n− 1)(n− 2)...1 =
∏n−1

j=0 (n− j)]. We define 0! ≡ 1.

• (n)k: a product of a positive integer n by the next k − 1 smaller positive

integers [(n)k ≡ n(n− 1)...(n− k + 1) =
∏k−1

j=0(n− j) = n!
(n−k)!

].

• Combinatorial symbol (or n pick k): it is defined as:(
n

k

)
≡ (n)k

k!
=

n!

(n− k)!k!
, with

(
n

k

)
≡ 0 if k < 0 or k > n. (1)

• Binomial theorem: the binomial theorem states that:

(a+ b)n =
n∑
j=0

(
n

j

)
ajbn−j. (2)

Consider an experiment such that each outcome can be represented as an

n-tuple (as in our example before, where we expressed each outcome as a 2-

tuple. Another example (that will be central in Chapter 4) is drawing a sam-

ple of size n from an urn with M balls, numbered from 1 to M . There are

two basic ways of drawing a sample: with replacement and without replacement.

In the case of sampling with replacement, the sample space is Ω = {(z1, ..., zn) :

z1 ∈ {1, ...,M}, ..., zn ∈ {1, ...,M}}, and in the case of sampling without re-

placement, it is Ω = {(z1, ..., zn) : z1 ∈ {1, ...,M}, z2 ∈ {1, ...,M}\{z1}..., zn ∈
{1, ...,M}\{z1, ..., zn−1}}.

As a general rule, counting the number of elements of a set A composed of

points that are n-tuples satisfying certain conditions consists of determining the

number of points that may be used as each of the n components, say N1, ..., Nn,

and this way obtain N(A) = N1 ·N2 · ... ·Nn. Thus, in the case of sampling with

replacement, Mn different samples could possibly be drawn. In the case without

replacement, N(A) = M · (M − 1) · ... · (M − n+ 1) = (M)n.

To determine the size of the power set of a finite sample space with M elements,

we can also use combinatorial analysis. For every subset of Ω that contains n ele-

ments, we can create n! different (note that, for instance, {1, 2, 3} is not different

than {2, 3, 1}, since both contain the same three objects) combinations of n ele-

ments, drawing from the set without replacement. Denote the number of different

sets of size n can be formed off Ω by xn. Now, because we know from the pre-

vious paragraph that we can draw (M)n different size n samples from Ω, then

n!xn = (M)n, which implies that xn = (M)n
n!

=
(
M
n

)
. Therefore, the total number

of sets that can be formed off Ω is
∑M

n=0

(
M
n

)
. Thus, using the binomial theorem

for a = b = 1, we see that N(2Ω) = 2M .

6



We can also consider finite sample spaces without equally likely points . In

this case, we have to define our probability function in a different way. We can

completely define values for P (F) for each of the 2N(Ω) events by specifying a value

of P (·) for each of the N = N(Ω) elementary elements. Let Ω = {ω1, ..., ωN}, and

define pj ≡ P ({ωj}) for j = 1, ..., N . To satisfy the second and third axioms of

the probability function, pj for j = 1, ..., N need to be such that
∑N

j=1 pj = 1,

since:

N∑
j=1

pj =
N∑

j=1

P ({ωj}) = P

(
N

∪
j=1
{ωj}

)
= P (Ω) = 1. (3)

For any event A, define P (A) ≡
∑
{j:ωj∈A} pj. It is easy to prove that this function

also satisfies the three axioms, and hence is a probability function.

IV. Definition of Random Variable and Cumulative Density Function

A random variable , denoted by X : Ω→ IR, is a function from Ω to the real

line such that the set Ar, defined by Ar ≡ {ω : X(ω) ≤ r}, belongs to F for every

real number r. What is important from this definition is that a random variable

is a transformation of an event into a numeric value.

In our example of tossing the coin, the number of heads obtained is a random

variable because i) it is a transformation of elements of Ω into real numbers (e.g.

X(head) = 1 and X(tail) = 0), and ii) the indicated condition is satisfied for any

r ∈ IR: if r < 0, {ω : X(ω) ≤ r} = ∅, if r ≥ 1, {ω : X(ω) ≤ r} = Ω, and if

0 ≤ r < 1 {ω : X(ω) ≤ r} = {tail}, and all three belong to F .

A random variable is represented by its cumulative distribution function

(cdf), denoted by FX , which transforms real numbers into probabilities as follows:

FX : IR→ [0, 1], FX(x) ≡ P (X ≤ x). (4)

This concept is analogous to the cumulative frequency that we defined in Chap-

ter 1. In the coin tossing example, the cdf is as follows:

FX(x) =


0, if x < 0
1
2
, if x ∈ [0, 1)

1, if x ≥ 1

. (5)

Notice that the main reason why we impose the mathematical condition Ar ⊂ F
for all r ∈ IR is to ensure that the cdf of the random variable is well defined over

the entire real line.

A cdf satisfies the following properties:
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• In the limit, FX(−∞) = 0 and FX(∞) = 1.

• FX is nondecreasing (because if x1 < x2 then {ω : X(ω) ≤ x1} ⊆ {ω :

X(ω) ≤ x2}).

• Fx is continuous from the right (not necessarily from the left, as in the coin

tossing example).

V. Continuous and Discrete Random Variables

We say that a random variable is discrete if its support includes a finite (or

countably infinite) number of points of support. The cdf of a discrete random

variable is a step function, with the discrete jumps occurring at the points of

support. The cdf is fully characterized by the probability mass function (pmf),

which is defined as P (X = xa), since:

FX(x) ≡
∑

{a:xa≤x}

P (X = xa). (6)

Note that the concept of pmf is closely tied to the relative frequency defined in

Chapter 1.

Analogously, we define a random variable as continuous if there exists a non-

negative function fX(·) such that:

FX(x) =

∫ x

−∞
fX(z)dz, ∀x ∈ IR . (7)

The function fX(·) is known as probability density function (pdf). The pdf

indicates the rate at which the probability is accumulated in the neighborhood of

a point, which is also connected to the relative frequency explained in Chapter 1.

This is easy to see using the definition of derivative (as, from Equation (7), if FX

is differentiable, the pdf is the derivative of the cdf at a given point):

fX(x) = lim
h→ 0

FX(x+ h)− FX(x)

h
. (8)

Continuous random variables (and their pdfs and cdfs) satisfy the following:

• fX(x) ≥ 0 in all the support where FX(x) is differentiable.

•
∫∞
−∞ fX(z)dz = 1, even though nothing prevents fX(x) > 1 at some point x.

• FX is continuous (from both sides).

• P (X = x) = 0 for all x in (and out of) the support of X.
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• P (x1 < X < x2) =
∫ x2
x1
fX(z)dz.

• fX(x) = d
dx
FX at all points where FX is differentiable.

A random variable can also be mixed : it is continuous in a part of its do-

main, but also has some points at which there is positive probability mass. More

formally, a random variable is mixed if its cdf is of the form:

FX(x) = pF
(d)
X (x) + (1− p)F (c)

X (x), 0 < p < 1, (9)

where F
(d)
X (·) is the cdf of the discrete part, and F (c)X(·) is the cdf of the continuous

part. This type of cdf, formed as a convex combination of cdfs of continuous and

discrete random variables is called a mixture .

VI. Commonly Used Univariate Distributions

In this section we introduce a set of widely used discrete and continuous para-

metric families of distributions. In the problem sets throughout the course you

may see additional distributions that are also commonly used. In any of the listed

manuals, you can find a more extensive list of distributions.

The Bernoulli distribution is a discrete distribution with pmf given by:

fX(x) =

{
px(1− p)1−x if x ∈ {0, 1}
0 otherwise

, (10)

where the parameter p satisfies 0 ≤ p ≤ 1.

The binomial distribution is a discrete distribution function with pmf given by:

fX(x) =


(
n

x

)
px(1− p)n−x for x = 0, 1, ..., n

0 otherwise
, (11)

where 0 ≤ p ≤ 1, and n ranges over the positive integers.

The Poisson distribution is a discrete distribution with pmf given by:

fX(x) =

{
e−λλx

x!
if x = 0, 1, 2, ...

0 otherwise
, (12)

where the parameter λ satisfies λ > 0.

The uniform distribution is a continuous distribution (there is a discrete

version of it) with pdf given by:

fX(x) =


1

b− a
if x ∈ [a, b]

0 otherwise
, (13)
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where a and b are the inferior and superior limits of the support, and with cdf

given by:

FX(x) =


0 if x ∈ (−∞, a)
x− a
b− a

if x ∈ [a, b]

1 if x ∈ (b,∞)

. (14)

If X is uniformly distributed, we denote X ∼ U(a, b).

The standard normal distribution is a continuous distribution with pdf

given by:

φ(x) =
1√
2π

exp

(
−x

2

2

)
, (15)

and cdf given by:

Φ(x) =

∫ x

−∞
φ(z)dz. (16)

Its pdf is symmetric around 0, its only maximum is at x = 0, and it has two

inflection points at ±1. The indication that a random variable X is distributed as

a standard normal is denoted as X ∼ N (0, 1). The cdf of the normal distribution

does not have a closed form solution, but its values are tabulated, and incorporated

in most statistical softwares (even in spreadsheets!).

The standard normal distribution can be generalized by means of an affine

transformation. This transformation is simply called the normal distribution ,

and is denoted by N (µ, σ2). More specifically, let Z ∼ N (0, 1), and let X ≡
µ + σZ, with σ > 0; then X ∼ N (µ, σ2). The cdf of the normal distribution is

given by:

FX(x) ≡ P (X ≤ x) = P (µ+ σZ ≤ x) = P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
, (17)

and its pdf is equal to:

fX(x) =
d

dx
FX(x) =

1

σ
φ

(
x− µ
σ

)
=

1√
2πσ2

exp

(
−1

2

(x− µ)2

σ2

)
. (18)

In this case, fX(·) is symmetric with respect to µ, its only maximum is at x = µ,

and it has two inflection points at ±σ.

VII. Transformations of Random Variables

In this section we want to learn what is the distribution of Y ≡ g(X), given

that we know that X ∼ FX(·). For example, suppose that we roll a dice once, and
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our random variable X is the number of points we obtain. Let Y = X2−7X+10.

In this example:

X 1 2 3 4 5 6

P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6

Y 4 0 -2 -2 0 4

and thus:

Y -2 0 4

P (Y = y) 1/3 1/3 1/3

More formally, what we have done is the following:

P (Y = y) =
∑

{i:g(xi)=y}

P (X = xi), (19)

this is, we summed the probability mass of all values of the support of X that

generate the same value for g(X).

When X is continuous, assuming that g(·) is invertible and differentiable, and

that g′(·) 6= 0, the cdf of Y is given by:

FY (y) ≡ P (Y ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)), (20)

and the pdf is obtained differentiating:

fY (y) =
d

dy
FY (y) = fX

(
g−1(y)

) ∣∣∣∣ 1

g′ [g−1(y)]

∣∣∣∣. (21)

In words, the probability in Y is accumulated the same way as it accumulates for

X (first term) times the rate at which X is transformed —regardless of sign—

into Y (second term). If g(·) is not invertible, it is still possible to follow a similar

procedure if the function can be divided in invertible pieces.

VIII. Expectation and Moments

The mathematical expectation of a random variable X, denoted by E[X], is

defined as follows:

• if X is discrete: E[X] ≡
∑

a xaP (X = xa),

• and if X is continuous: E[X] ≡
∫∞
−∞ xfX(x)dx.

Note the analogy with the sample mean described in Chapter 1. This is not coin-

cidental, as the expectation is the population equivalent to the sample mean. The
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two expressions above can be unified using the Riemann-Stieltjes integral :

E[X] ≡
∫ ∞
−∞

xdFX(x). (22)

The variance of a random variable X, denoted by Var(X), is the expected

quadratic deviation with respect to the mean µX ≡ E[X]:

• if X is discrete: Var(X) ≡
∑

a [(xa − µX)2P (X = xa)],

• and if X is continuous: Var(X) ≡
∫∞
−∞(x− µX)2fX(x)dx.

In general, using the Riemann-Stieltjes integral:

Var(X) ≡
∫ ∞
−∞

(x− µX)2dFX(x). (23)

The variance is a measure of dispersion of the probability mass (or density) of X

around its mean, and it is the population counterpart of the sample variance. It

is always nonnegative. And we can define the standard deviation as:

σX ≡ +
√

Var(X), (24)

where the positive sign indicates that it is given by the positive root only. More

generally, the kth central moment of the distribution of X is defined as:

E[(x− µX)k] ≡
∫ ∞
−∞

(x− µX)kdFX(x). (25)

Its interpretation is analogous to the sample moments described in Chapter 1,

and we can normalize the third and fourth moments in the way described there

to obtain the coefficients of skewness and kurtosis . We similarly define the kth

uncentered moment as E[Xk].

The expectation (and analogously any moment) of a transformation of X, Y ≡
g(X), can be calculated directly with a transformation of Equation (22), without

a need of obtaining the cdf of Y first:

E[Y ] ≡
∫ ∞
−∞

ydFY (y) =

∫ ∞
−∞

g(x)dFX(x). (26)

This implication is very useful to establish a set of general properties of the

expectation (and the variance). Let c be a constant, and let g(X) and h(X)

denote two arbitrary functions of the random variable X. Then:

• E[c] = c,

• E[cX] = cE[X],

12



• E[g(X) + h(X)] = E[g(X)] + E[h(X)],

• E[g(X)] ≥ E[h(X)] if g(X) ≥ h(X) for every possible value of X,

and:

• Var(X) = E[X2]− E[X]2.

• Var(c) = 0,

• Var(cX) = c2 Var(X),

• Var(c+X) = Var(X).

An additional interesting property of the expectations is known as the Jensen’s

inequality , which is as follows. Let X denote a random variable, and let g(·)
denote a continuous and convex function. Then:

E[g(X)] ≥ g (E[X]) . (27)

The opposite is true if g(·) is concave. If the function is strictly convex (or con-

cave), the inequality holds strictly. And if the function is linear, then Equa-

tion (27) is satisfied with equality. The proof is simple. If a function is (globally)

convex, for every point x of its domain crosses a line h(X) = ax + bxX that

satisfies h(X) ≤ g(X) for all X (the tangent). Given that, we know (from the

last property of the expectations listed above) that E[g(X)] ≥ E[h(X)]. However,

we know that h(x) = g(x) by construction, and thus, at the point x = E[X],

h(E[X]) = g(E[X]). Because h(E[X]) = E[h(E[X])], the result follows.

Another property is known as the Chebyshev’s inequality , which is satisfied

by any distribution, and is given by:

P (|X − µX | ≥ c) ≤ σ2
X

c2
⇔ P (|X − µX | ≥ kσX) ≤ 1

k2
, (28)

where X is a random variable, µX is its mean, σ2
X is its variance, c is an arbitrary

positive constant, and k ≡ c
σX

. Equation (28) states that not more than 1
k2

of

the distribution’s values can be more than k standard deviations away from the

mean. For example, in the case of the normal distribution, P (|X − µX | ≥ σX) ≈
1 − 0.6827 ≤ 1, P (|X − µX | ≥ 2σX) ≈ 1 − 0.9545 ≤ 0.25, and P (|X − µX | ≥
3σX) ≈ 1− 0.9973 ≤ 1

9
.

More generally, the Markov’s inequality establishes that, for any positive

constant c and nonnegative function g(·):

P (g(X) ≥ c) ≤ E[g(X)]

c
, (29)

provided that the expectation E[g(X)] exists.

13



IX. Quantiles, the Median, and the Mode

The τth quantile of a distribution indicates the minimum value of X below

which there is a fraction τ of the density of the distribution:

qτ ≡ min{x : FX(x) ≥ τ}, (30)

for τ ∈ [0, 1]. When FX(·) is invertible, qτ = F−1
X (τ). Thus, the quantiles also

characterize the distribution of X, as so does the cdf. The median (which is

the population equivalent to the sample median seen in Chapter 1) is the 0.5th

quantile, q0.5. The mode is the value of X that has the maximum density (or

mass if X is discrete).
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