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I. Introduction

Descriptive statistics is the discipline of qualitatively describing the main fea-

tures of some data. It differs from inferential statistics in that the former aim to

summarize a sample, whereas the latter uses the data to learn about the popula-

tion that the sample is meant to represent. Examples include numerical measures

of the position/central tendency of the data (e.g. mean, median, or mode), their

dispersion (e.g. standard deviation, skewness, or kurtosis), the sample size, or

sample sizes of relevant subgroups.

The data that we analyze in Economics can be classified in three different types:

• Cross-sectional data: information for a sample of individuals at a given point

in time (one observation per individual).

• Time series data: repeated observations for a given subject at different

points in time.

• Panel data: a sample that combines both types of information, i.e. multiple

individuals with repeated observations at different points in time each.

We typically distinguish between two types of variables: continuous and discrete.

Discrete variables can ordinal, cardinal, or categorical; in the latter case, their

values do not have a proper meaning (e.g. a variable that equals 0 if the individual

is a Male, and 1 if she is Female). There are differences in the way we treat

each type of data and variables. However, continuous variables can be treated as

discrete if they are grouped in intervals.

II. Frequency Distributions

In this chapter, we build on a simple example to introduce the main notions

that we are after. Consider a dataset of 2,442 households with information on

household gross income in year 2010 for each of them. In Table 1 we describe

the distribution of this variable in different ways. This variable is intrinsically

continuous. In order to ease their description, the data are presented in intervals.
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Table 1—Income Distribution (in Euros, 2,442 Households)

Absolute
frequency

Relative
frequency

Cumul.
frequency

Bandwidth Frequency
density

Central
point

Less that 10,000 187 0.077 0.077 10,000 0.077 5,000

10,000-19,999 387 0.158 0.235 10,000 0.158 15,000

20,000-29,999 327 0.134 0.369 10,000 0.134 25,000

30,000-39,999 446 0.183 0.552 10,000 0.183 35,000

40,000-49,999 354 0.145 0.697 10,000 0.145 45,000

50,000-59,999 234 0.096 0.792 10,000 0.096 55,000

60,000-79,999 238 0.097 0.890 20,000 0.049 70,000

80,000-99,999 91 0.037 0.927 20,000 0.019 90,000

100,000-149,999 91 0.037 0.964 50,000 0.007 125,000

150,000 or more 87 0.036 1.000 100,000 0.004 200,000

Figure 1. Income Distribution (in Euros, 2,442 Households)
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The first column indicates the number of households in each category. This

statistic is known as absolute frequency , or, simply, frequency. We denote

it by Na, where a indicates one of the A possible bins (a.k.a. cells or groups).

The absolute frequency gives relevant information on how many households in

the sample are in each income cell, but its values have limited information on the

income distribution, unless they are compared to the frequencies in other cells.

An alternative measure that eases this comparison is the relative frequency ,

denoted by f(x = a), or simply fa. The relative frequency gives the fraction of

households in a sample that are in a given cell a, and is defined as:

fa ≡
Na

N
, (1)

where Na is the number of observations in cell a ∈ {1, ..., A}, and N ≡
∑A

a=1Na.

In our example, the second column of Table 1 gives the relative frequencies.

Graphically, the relative frequency is plotted in a bar chart in Figure 1A. A bar

graph is a chart with rectangular bars with proportional height to the values they

represent. In this case, the height of the bars represent the relative frequencies.

A misleading feature of the relative frequencies to represent continuous variables,

as it can be appreciated in Figure 1A, is that results are sensitive to the selection
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of bin widths. For example, the last three bars have a similar height, but they

correspond to differently sized intervals. If we had grouped all observations in

intervals of 10,000 euros, the bars at the right of the figure would be shorter.

An alternative representation that avoids this problem is the histogram . A

histogram is a representation of frequencies shown as adjacent rectangles of area

equal (or proportional to) the relative frequency. Thus, the height of the rectangles

depicts the frequency density of the interval, which is the ratio of the relative

frequency and the width of the interval. Sometimes, histograms are normalized

such that the total area displayed in the histogram equals 1.

Figure 1B is a histogram of the data presented in Table 1. The height of the

rectangles is normalized such that the frequency density of the intervals of the most

common height (10,000 euros) are relative frequencies (fifth column of Table 1).

The cumulative frequency , c(x = a) or simply ca, calculated in the third

column of Table 1, indicates the fraction of observations in a given cell a, or in

the cells below. More formally, the cumulative frequency is defined as:

ca ≡
a∑
j=1

fj. (2)

In our example, the cumulative frequency is depicted in Figure 1C.

All the description so far is on computing frequency distributions for discrete

data. When data are continuous, we can use kernels to compute these distribu-

tions. In this case, we compute the frequency density as:

f(a) =
1

N

N∑
i=1

κ

(
xi − a
γ

)
, (3)

where κ(·) is a kernel function . In general, a kernel function is a non-negative

real-valued integrable function that is symmetric and integrates to 1.

The kernel function gives weight to observations based on the distance between

xi and the value we are conditioning on, a. An extreme example, which matches

exactly with Equation (1) is:

κ(u) =

{
1, if u = 0

0, if u 6= 0
, (4)

where we only add the values if xi = a (or u = xi − a = 0), exactly as before.

If we had the raw disaggregated data, and we wanted to use (equal size) intervals,
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we could use the following kernel:

κ(u) =

{
1, if |u| ≤ ũ

0, if |u| > ũ
. (5)

In this case, we are constructing intervals of size 2ũ centered at a. The slight

difference between this case and what we did before with the intervals is that

in this case we have a completely defined function for the conditional mean of y

given x for all values of x. This function is constant for a while and then jumps

every time a new observation comes in or steps out.

The problem of these two kernel functions is that they are not smooth. A

commonly used smooth alternative is a Gaussian kernel , which is given by the

density of the normal distribution:

κ(u) =
1√
2π
e−

1
2
u2 . (6)

The parameter γ, used in the argument of the kernel, is known as the band-

width , and its role is to penalize observations that are far from the conditioning

point, so that we can decide how much weight to give to observations with xi very

different from a without having to change the function κ(·). The larger the γ,

the lower the penalty to deviations, and hence the larger the window of relevant

observations used in the computation.

Following with our example, Figure 1D plots three different kernel frequencies.

Thick and dashed lines use a Gaussian kernel, the former with the optimal band-

width, and the latter with a bandwidth of 10,000. The thin solid line depicts a

rectangular kernel (Equation (5)) with bandwidth equal to 10,000.

III. Summary Statistics

Summary statistics are used to summarize a set of observations from the data

in order to communicate the largest amount of information as simply as possi-

ble. Typical summary statistics include measures of location or central tendency

(e.g. mean, median, mode) and statistical dispersion (e.g. standard deviation,

skewness, kurtosis).

Location statistics indicate a central or typical value in the data. The most

commonly used one is the arithmetic mean , also known as average, sample

mean, or, when the context is clear, simply the mean. This statistic is defined as

the weighted sum of the numerical values of our variable of interest for each and
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every observation. More formally, the sample mean is defined as:

x̄ ≡
N∑
i=1

wixi, (7)

where xi is the value of x for observation i, N is the total number of observations,

and wi is the weight of the observation, such that
∑N

i=1wi = 1. When all obser-

vations have the same weight, wi = 1
N

, and the sample mean is simply the sum

across observations of all values of xi divided by the number of observations.

Sometimes we are interested in giving different weight to each observation. For

example, consider the sample average of the income variable presented in bins in

Table 1 above. Giving to each bin a value equal to the central point of the interval

(listed in the last column of the table) and computing a sample mean of the 10

bins without using weights would not provide the desired result because each bin

includes a different set of individuals. Thus, in that case, it would be more appro-

priate to compute the sample average using the relative frequencies as weights:

inci =
10∑
i=1

fi × inci. (8)

Note that the relative frequencies are valid weights, as they sum to 1.

The main problem of the sample mean as a location statistic is that it is very

sensitive to extreme values. A single but very extreme observation can deviate

its value substantially. An alternative measure that is not sensitive to extreme

values is the median . The median is the value of the observation that separates

the upper half of the data from the lower half. Informally, the median is the value

of the variable for the individual that, if we sort all observations, leaves the same

number of observations above and below her. More formally, it is defined as:

med(x) ≡ min

{
a : ca ≥

1

2

}
, (9)

that is, the minimum value for which the cumulative frequency is above one half.

The main advantage of the median, as noted above, is that it is not sensitive to

extreme values. However, its main inconvenience is that changes in the tails are

not reflected, because the median only takes into account the frequencies of these

values, but not the values themselves.

A third statistic that is often used to describe location is the mode . The mode

is the value with the highest frequency. More formally:

mode(x) ≡
{
a : fa ≥ max

j 6=a
fj

}
. (10)
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While the mean and the median are measures of the centrality of the data in

the strictest sense, the mode gives the most typical value. Note that, in some

instances, we can have more than one mode.

As central statistics, both the sample mean and the median can be computed

minimizing the distance between the different data points in the sample and the

statistic. The function that describes the distance between the data and a pa-

rameter or statistic of interest is called the loss function , denoted by L(·). The

loss function satisfies 0 = L(0) ≤ L(u) ≤ L(v) and 0 = L(0) ≤ L(−u) ≤ L(−v)

for any u and v such that 0 < u < v. With trivial algebra, it can be proved that

the sample mean minimizes the sum of squared deviations (quadratic loss):

x̄ = min
θ

N∑
i=1

wi(xi − θ)2. (11)

Similarly (though slightly more difficult to prove), the median minimizes the sum

of absolute deviations (absolute loss):

med(x) = min
θ

N∑
i=1

wi|xi − θ|. (12)

Dispersion statistics indicate how the values of a variable across different obser-

vations differ from each other. More specifically, they summarize the deviations

with respect to a location measure, typically the sample mean.

The sample variance , or, when the context is clear, simply the variance, is

given by the average squared deviation with respect to the sample mean:

s2 ≡
N∑
i=1

wi(xi − x̄)2. (13)

The standard deviation is defined as s ≡
√
s2. The interest in the standard

deviation is because it is easy to interpret, as its value is in the same units as the

variable of interest. An alternative measure, that does not depend on the units

in which the outcome of interest is measured is the coefficient of variation ,

which is a standardized measure of dispersion computed as the ratio between the

standard deviation and the sample mean:

cv ≡ s

x̄
. (14)

The coefficient of variation can be interpreted as a percentage deviation with

respect to the average value of the variable.
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The variance belongs to a more general class of statistics known as central

moments . The (sample) central moment of order k, denoted by mk, is defined as:

mk ≡
N∑
i=1

wi(xi − x̄)k. (15)

The central moment of order 0, m0, is equal to one, as m0 =
∑N

i=1wi = 1. From

the definition of the sample mean x̄, it also follows that m1 = 0. The second order

central moment m2 is the sample variance. Other two central moments that are

popular are the third and fourth order moments. The third order moment is used

to compute the skewness coefficient , which we denote by sk, and is defined as:

sk ≡ m3

s3
. (16)

If the distribution is symmetric, m3 = 0, because the right cubic deviations from

the mean exactly compensate with the left ones (as the sample mean is the value

that makes left and right deviations from it to exactly compensate, since m1 = 0

by construction). A positive sign for sk indicates that the distribution is skewed

to the right, and a negative value implies the opposite. In a distribution that is

skewed to the right, the mean is above the median, and the opposite is true if the

distribution is skewed to the left.

An analogous statistic computed from the fourth central moment is called the

(excess) kurtosis coefficient , and is defined as:1

K ≡ m4

s4
− 3. (17)

This statistic indicates how “fat” are the tails of the distribution. For a nor-

mal distribution, K = 0 (that is why we normalize it by subtracting 3 from it).

Negative values indicate a platykurtic distribution (fatter tails than the normal

distribution), whereas positive values indicate a leptokurtic distribution (thiner

tails than the normal distribution).

Following with the example from Table 1, we compute all these descriptive

statistics, using the central point of the intervals as values for the variable, and

the relative frequencies as weights. Table 2 presents the results. The sample

mean is 46,253 euros, way above the median, which is 25,000 euros (i.e. the

20,000-29,999 euro interval). The most frequent interval is 30,000-39,999 euros

(whose central point is 35,000 euros). The variance is hard to interpret, but the

1 The kurtosis coefficient that is normalized by subtracting 3 is often known as excess kurtosis
coefficient. In that terminology, the kurtosis coefficient would the be defined as m4/s

4.
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Table 2—Summary Statistics

Statistic: Value

Sample mean (x̄) 46,253

Median (med) 25,000

Mode 35,000

Variance (s2) 1,575,784,440

Std. deviation (s) 39,696

Coef. variation (cv) 0.858

Skewness (sk) 2.24

Kurtosis (K) 5.82

standard deviation, which is 39,696 is quite high. The coefficient of variation is

0.858, which indicates that the standard deviation is 85.8% of the the mean. The

skewness coefficient is 2.24, which indicates a positively skewed distribution (and

indeed the sample mean is larger than the median), and the kurtosis is quite high.

IV. Bivariate Frequency Distributions

In this section, we extend the concepts in Section II (and introduce new ideas)

to describe the co-movements of two variables. Table 3 presents the absolute and

relative joint frequencies of the same variable as in the example above (gross

income) and liquid assets. This type of tables are also know as contingency

tables . Note that the totals in the last column coincide with the absolute and

relative frequencies presented in Table 1. However, the table includes additional

information. Each value of the top panel of the table Nij is the absolute frequency

for the cell with a ∈ {1, ..., A} income, and b ∈ {1, ..., B} assets. The relative

frequencies in the bottom panel, denoted by f(x = a, y = b) or simply fab, are

computed analogously to Equation (1):

fab =
Nab

N
. (18)

The relative frequencies are also presented in Figure 2.

To obtain the relative frequencies of one of the variables (i.e., the last column

or last row of the bottom panel of Table 3), which are known in this context as

marginal frequencies, we sum over the other dimension:

fa =
B∑
b=1

fab =

∑B
b=1Nab

N
=
Na

N
, (19)

and analogously for fb.

We can also be interested in computing conditional relative frequencies,

that is, the relative frequency of yi = b for the subsample of observations that
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Table 3—Joint Distribution of Income and Liquid Assets (2,442 Households)

Liquid assets (in euros):

Gross Income (in euros): None 1-999 1,000-
4,999

5,000-
19,999

20,000-
59,999

60,000-
220,000

Total

A. Absolute Frequencies

Less that 10,000 107 16 16 26 12 10 187

10,000-19,999 191 61 49 41 25 20 387

20,000-29,999 127 45 45 65 28 17 327

30,000-39,999 188 75 56 61 42 24 446

40,000-49,999 81 66 69 69 46 23 354

50,000-59,999 48 33 48 63 25 17 234

60,000-79,999 33 28 50 51 46 30 238

80,000-99,999 6 2 21 21 22 19 91

100,000-149,999 7 5 3 13 27 36 91

150,000 or more 2 0 0 7 14 64 87

Total 790 331 357 417 287 260 2,442

B. Relative Frequencies

10,000-19,999 0.078 0.025 0.020 0.017 0.010 0.008 0.158

20,000-29,999 0.052 0.018 0.018 0.027 0.011 0.007 0.134

30,000-39,999 0.077 0.031 0.023 0.025 0.017 0.010 0.183

40,000-49,999 0.033 0.027 0.028 0.028 0.019 0.009 0.145

50,000-59,999 0.020 0.014 0.020 0.026 0.010 0.007 0.096

60,000-79,999 0.014 0.011 0.020 0.021 0.019 0.012 0.097

80,000-99,999 0.002 0.001 0.009 0.009 0.009 0.008 0.037

100,000-149,999 0.003 0.002 0.001 0.005 0.011 0.015 0.037

150,000 or more 0.001 0.000 0.000 0.003 0.006 0.026 0.036

Total 0.324 0.136 0.146 0.171 0.118 0.106 1.000

have xi = a, which is denoted by f(y = b|x = a):

f(y = b|x = a) ≡ Nab

Na

=
Nab

N
Na

N

=
fab
fa
. (20)

In our example, we could be interested in comparing the distribution of income

for individuals with no assets to the distribution of income for individuals with

more than 60,000 euros in liquid assets.

V. Conditional Sample Means

Restricting the sample to observations with xi = x, we can calculate the con-

ditional version of all the descriptive statistics introduced in Section III. As they

are all analogous, we focus on the conditional mean, which is is:

ȳ|x=a ≡
N∑
i=1

1{xi = a} × f(yi|xi = a)× yi, (21)

9



Figure 2. Joint Distribution of Income and Liquid Assets (2,442 Households)
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Liquid Assets (in euros) Gross Income (in euros)

Table 4—Conditional Means of Income by Level of Assets (in Euros)

Liquid assets: Mean gross income:

None 29,829

1-999 37,145

1,000-4,999 43,165

5,000-19,999 46,906

20,000-59,999 60,714

60,000-220,000 94,981

Unconditional 46,253

where 1{·} is the indicator function that equals one if the argument is true, and

zero otherwise. Table 4 shows the conditional means of gross income for each level

of liquid assets in our example.

All this assumes that the data is either discrete, or grouped in discrete intervals.

However, grouping data for a continuous variable in intervals can be problematic.

If intervals are too wide, we might be loosing relevant variation, but if they are two

thin, we will be computing our statistics with very few observations, and we can

even have empty cells (course of dimensionality). Thus, we might be interested in

analyzing the data without grouping them in intervals.

To compute the conditional mean of y given x without discretizing x we can
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use a kernel function. The intuition is that we compute the mean of yi for the

observations with xi = x, but also for other observations that have xi that are

close to x, giving to those a lower weight, based on how far they are. More

formally, we can write the conditional mean as:

ȳ|x=a =
1∑N

i=1 κ
(
xi−a
γ

) N∑
i=1

yi × κ
(
xi − a
γ

)
, (22)

where we use κ
(
xi−a
γ

)
as a weight, and the ratio outside of the sum is a normal-

ization such that the weights sum to one. Using the kernel function defined in

Equation (4), the resulting conditional mean would match Equation (21) exactly.

VI. Sample Covariance and Correlation

The final set of descriptive statistics presented in this chapter includes two

measures that provide information on the co-movements of two variables. Impor-

tantly, these two measures speak about the existence of linear relations between

two variables, but they can fail at detecting a nonlinear relation between them.

The first statistic is the sample covariance or, when the context is clear, sim-

ply covariance, which is the average of the product of deviations of each variable

with respect to its sample mean. More formally, the covariance is defined as:

sxy ≡
N∑
i=1

wi(xi − x̄)(yi − ȳ). (23)

A positive covariance indicates that it is more common to have individuals with

deviations of x and y of the same sign, whereas a negative correlation indicates

that deviations are more commonly of opposite sign.

One of the main problems of the covariance is that its magnitude is not easy

to interpret. Alternatively, the correlation coefficient is a statistic whose

magnitude indicates the strength of the linear relation. The correlation coefficient

is defined as:

rxy ≡
sxy
sysx

, (24)

and it ranges between -1 and 1, with the former indicating perfect negative corre-

lation, and the latter indicating perfect positive correlation. A value of 0 indicates

that the two variables are (linearly) uncorrelated.
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