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1. What is GAUSS?

Gauss is a matrix-based programming language that is very popular in the fields of Mathe-

matics, Statistics, and Economics among many others. It is a quite similar language to MAT-

LAB which you may also learn from other courses in this master. Compared to other popular

languages such as Fortran or C++, it is usually seen as slower than them but easier to learn

and to program, and it has a lot of useful pre-programmed routines that become handy in

many applied econometric problems. The fact that it is matrix-based makes it very convenient

because it allows to translate the formulas that we want to compute in a very straightforward

way. It also provides effective tools for visual analysis of the data and its presentation including

a large variety of graphics.

This course is constituted by three lectures. The present lecture aims to provide you with

the essentials of GAUSS and its applications. The second one will introduce you to the world of

data simulation and, finally, the third one will present you the basics of numerical optimization.

The emphasis will be on acquiring familiarity with the fundamentals of GAUSS at the same

time that you learn how to approach some problems numerically, but we don’t aim to make

you an expert!
∗E-mail: joan.llull@cemfi.es. URL: http://www.cemfi.es/~joanllull. This notes are based on the class notes

used by Enrique Moral-Benito in the academic year 2008-2009; I wish to thank him for providing me with them
and for useful comments.
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2. Workspace

One of the advantages of GAUSS is that it is very user-friendly. It has a Windows based

environment, and its main components can be seen in the following screenshot:

From the Menu Bar you have access to the usual menus such as File, Edit... which allow

you to execute different actions. You can also find there the menu Help in which you can find

very complete information about commands, routines, tools, syntax, and many other things.

As it is usual in Windows, some of the previous actions can also be executed from the icons

in the Toolbar. Moveover, it also allows you to change the working directory and to open

program files (see below).

The Status Bar shows you the status of the windows and processes on the left side. On

the right side you will find the cursor locator and the status of the options OVR, CAP and

NUM.

You can work in two different ways with GAUSS. The first one is to write the commands

directly on the Command Input - Output Window and execute them by clicking the "enter"

key in your keyboard. You normally do this for very simple (and probably non-repetitive)

exercises. The results of the commands are shown in the same window.

The second (and most common) way of working with GAUSS is by running programs
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previously written in any text editor. GAUSS includes its own text editor, the Edit Window.

If you want to access the GAUSS text editor, there are two different ways:

1. Go to File-New

2. Click on the New button in the Toolbar

In the new window, you can type the commands you want to execute. Then, when you run the

program, the results will be shown in the Command Input - Output Window.

The last (but not least) component of a GAUSS window is the Source View that you can

see on the left side of the screen. There are two different tabs that allow us to access the files

and symbols related to our working space:

• Source Tab: it includes a list of active libraries and their source files. You can access

these files by clicking the right button of your mouse.

• Symbols Tab: it includes the symbols of the working space according to their type. (the

most used is matrices)

3. Data Input

There are two basic ways of data input in GAUSS:

1. To create directly vectors and matrices of data in the program

2. To read the data stored in another file

3.1. Variable Definition

3.1.1. Scalars

To create a variable in GAUSS we only have to introduce the name of the variable and its

value1. For example, the command:

a=3

creates a scalar variable with value equal to 3. Any posterior command can make use of this

variable, for example:

b=sqrt(a)

generates a new variable called b whose value is the square root of the variable a.
1 It is important to note that GAUSS is not case-sensitive, i.e., it does not distinguish between upper-case

and lower-case letters.
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3.1.2. Vectors and Matrices

We can also define vectors and matrices in a similar way than scalars. If we want to create

the following matrix:

A =

 1 2
3 4
5 6


we type either:

A = {1 2,3 4,5 6}

or:

let A[3,2] = 1 2 3 4 5 6

The commands rows(A) and cols(A) show the number of rows and columns of the matrix

A.

Standard matrices can be defined as follows:

• Matrix B of ones with dimension N1xN2: B = ones(N1,N2);

• Matrix C of zeros with dimension N1xN2: C = zeros(N1,N2);

• Identity matrix D with dimension N1xN1: D = eye(N1);

• Matrix F of threes with dimension N1xN2: let F[N1,N2] = 3;

A vector y whose elements follow an arithmetic progression can be created as follows:

y = seqa(initial value,increment,N)

where N is the number of elements in the sequence (number of rows). For example:

y = seqa(1,0.25,4) ⇒ y =


1.00
1.25
1.50
1.75


3.2. Elements of a matrix

Given the matrix:

A=

 1 2
3 4
5 6


• To access the element (i, j) of A we type A[i,j] or z=A[i,j] if we want to assign the

value of that element to a new scalar variable called z.
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• To access the row i of the A matrix ⇒ A[i,.]; For example: A[1,.]=
(

1 2
)

• To access the column j of the A matrix ⇒ A[.,j]; For example: A[.,1]=

 1
3
5


• We can also have access to different sub-matrices, for example:

A[2:3,1:1]=
(

3
5

)

3.3. Reading Data Files

There are several alternatives but here we will explain only the most basic way of loading

data in GAUSS from an external file. We need to know the number of observations and variables

there are in the data file and use the command:

load x[r,c]=filename

where x is the name of the matrix that will contain the data in GAUSS, r is the number of

rows (observations) and c the number of columns (variables). For example:

load x[80,44]= matrix1.csv (1)

If we do not know the number of observations but we do know the number of variables, we

can load the data as follows:

load x[] = matrix1.csv;

y = reshape(x, rows(x)/44, 44);

where m is the number of variables.

4. Basic Operations with Matrices

Given the matrices:

A =

(
1
2

)
and B =

(
3
4

)
• Multiplication, addition and substraction: C*A, A+B, A-B (we should always check that

the dimension of the matrices is correct)

• Element by element operation: F = A.*B ⇒ F =

(
3
8

)
or G = A./B ⇒ G =

(
0.33
0.50

)
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• Element by element exponentiation: ˆ

• Transpose: C’

• Inverse: inv(C)

• Horizontal concatenation2: C = A ~B ⇒ C =

(
1 3
2 4

)

• Vertical concatenation: D = A| B ⇒ D =


1
2
3
4


• Relational operators: <, >, <=, >=, ==

• Logical operators: and, not, or

• Determinant: det(C)

• Elements of the diagonal: diag(C)

• Eigenvalues: eig(C)

5. Graphs

Any program drawing graphs should have the lines:

library pgraph;
graphset;

ideally at the start of the program. "library pgraph" enables GAUSS to know where all the

specialized graph-drawing routines are to be found. Note that graphs cannot be drawn if this

line is omitted. "graphset" resets the graphical global variables to the default state.

Previous to the call to the function that draws the graph, we must define the specifications

of the graph: labels, titles and other options. For example:

• To add a title to the graph:

title("The title");

• To label the axes:

xlabel("The x label");

ylabel("The y label");
2 The symbol ~ can be obtained by typing Alt+126
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• To define the scale of the axes:

xtics(min,max,step,minordiv);

ytics(min,max,step,minordiv);

For example, if we want to define a five-year time scale with year subdivisions for the

X-axis between the years 1970 and 2000, we will write:

xtics(1970,2000,5,5);

• To change the color of the graph lines we modify the value of the global variable _pcolor.

The color is defined by a integer between 0 and 15. By default, GAUSS sets _pcolor=0.

• By default, GAUSS saves all the graphs in the same file, "graphic.tkf". Therefore, if we

plot more than one graph that we want to save, we need to assign a name to every file in

order to avoid that GAUSS overwrites the files. This is done by typing:

_ptek="filename.tkf";

After customizing the graph, then we call two dimensions graphs with the following com-

mand:

xy(x,y);.

For example, the plot below graphs the following variables:

x=seqa(1970,.5,300);

y=sin(x)+x-1970;
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You can obtain more information about graphs in GAUSS by typing "Using Publication

Quality Graphics" in the Search tab of the User Guide in the Help Menu. There are other

interesting graphs like histograms (you will use them in the exercises below) or nice surface

graphs like the following:
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Code for obtaining the graphs from the Problem Set

Exercise 1. Gamma distributions

new;

cls;

library pgraph;

graphset;

N=100;

a=0;b=10;

xvar=seqa(a,(b-a)/N,N+1);

alpha=1.5; lambda=1;

yvar1=(xvar.^(alpha-1)).*(exp(-lambda*xvar));

alpha=3; lambda=1;

yvar2=(xvar.^(alpha-1)).*(exp(-lambda*xvar));

_pnum=2;

_pnumht=.25;

_paxht=.35;

_pdate="";

_pcolor=3;

_pmcolor={0,0,0,0,0,0,0,0,15};

_ptek="PS1d.tkf";

xtics(a,b,1,5);

ytics(0,.6,.1,5);
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fonts("simplex simgrma");

window(1,2,0);

setwind(1);

xlabel("\201Gamma(1.5,1)");

xy(xvar,yvar1);

nextwind;

xlabel("\201Gamma(3,1)");

xy(xvar,yvar2);

endwind;

The resulting pictures are the following:

Exercise 2. Normal mixtures

new; cls; library pgraph; graphset;

N=50;

a=-5;b=5; p1=1/2;p2=1/2; sigma1=1;sigma2=1;

xvar=seqa(a,(b-a)/N,N+1);

mu1=.5;mu2=-mu1;

yvar1=p1/sigma1*pdfn((xvar-mu1)/sigma1)+p2/sigma2*pdfn((xvar-mu2)/sigma2);
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mu1=1;mu2=-mu1;

yvar2=p1/sigma1*pdfn((xvar-mu1)/sigma1)+p2/sigma2*pdfn((xvar-mu2)/sigma2);

mu1=1.5;mu2=-mu1;

yvar3=p1/sigma1*pdfn((xvar-mu1)/sigma1)+p2/sigma2*pdfn((xvar-mu2)/sigma2);

_pnum=2; _pnumht=.25; _paxht=.35; _pdate=""; _pcolor=3;

_pmcolor={0,0,0,0,0,0,0,0,15}; _ptek="PS2d.tkf";

fonts("simplex simgrma");

window(1,3,0); setwind(1); xlabel("\202m\201]1[ = 0.5");

xy(xvar,yvar1); nextwind; xlabel("\202m\201]1[ = 1");

xy(xvar,yvar2); nextwind; xlabel("\202m\201]1[ = 1.5");

xy(xvar,yvar3); endwind;

The resulting pictures are the following:
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Exercises

Now we all have some basic notions of the GAUSS programming language. Therefore, we

are ready to practise and to do some very easy exercises.

If you have some previous experience in any programming language and you find the exer-

cises too easy, you can help your mates once you have finished the exercises.

Exercise 1: Matrices

Generate the following matrices:

A =

1 2
3 4
5 6

 B =

 2 4 6
8 10 12
14 16 18

 C =

2 8 4
9 3 6
1 5 2


and compute:

1. D = B ∗ A

2. E = D ∗ A′

3. F = B + C

4. G = B. ∗ C

5. Try to compute A ∗B , A. ∗ C or A+ E. What happens?

6. Calculate the determinant of C in two different ways and check that you obtain the same

result. (Hint: use the eigenvalues of C)

7. Compute the inverse of H = A ∗ A′. What happen? Why?3

Exercise 2: Random Number Generator

GAUSS has its own random number generator. This will be very useful for us when we do

any kind of simulation. For example, we can generate a vector or a matrix of normal random

numbers with the following command:

rndn(r,c)

where r and c are the numbers of rows and columns of the matrix of normal random numbers.
3Note that H can be written as A[., 1] ∗A[., 1]′ + A[., 2] ∗A[., 2]′.
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1. Create a scalar variable called N with the value 1, 000, 000.

2. Generate a N × 1 vector of normal random numbers and call it z.

3. Compute the mean and the standard deviation of z and call them muz (µz) and stdz

(σz).

4. Using z, generate a new vector z1 with standard deviation 2 and mean 0

5. Generate a N×1 vector of normal random numbers called y with mean to 3 and standard

deviation 0.5. (µy = 3, σy = 0.5)

6. Check that the mean and the standard deviation of y are 3 and 0.5 respectively.

7. Do the exercise again but using N = 1, 000. What happens?

Exercise 3: Graphics

Now we will plot the vectors of random numbers that we have generated in the previous

exercise (the ones with 1,000 observations).

1. Load the pgraph library and reset all the graphical global variables to the default values.

2. Create the vector for the X-axes with the command seqa.

3. Plot the z vector of N(0, 1) random numbers and add the title: Graph 1

4. Save the graph in your computer with the name "graph1.tkf"

5. Plot the three series, z, z1 and y, together (Hint: horizontal concatenation) in the same

graph called Graph 2

6. Plot two different random draws with size 1,000 of a N(0, 1) variable in the same graph.

7. By using the Help menu plot the histogram of the three series
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1. Writing Programs

A program is a structured set of statements that are run together. The main part of

the program is called Main Program, and is the portion of the code that executes thread of

statements that the user has programmed. This Main Program can make calls to two types of

subordinated parts of it which are called procedures and functions respectively.

To start a new program in GAUSS go to File - New, or click the New icon in the Toolbar.

A program is usually started with the new; statement, which clears the workspace; as a result,

all matrices and procedures from previous programs are deleted from memory.

Every command within a program must end with a semicolon in order to separate it from

the next command (or statement). You can add comments (a piece of text that is not executed

by GAUSS) into the program by typing either "/*this is a comment*/" or "@this is a

comment@"

Any active file that contains a program is executed by clicking Run Active File in the Run

menu or the Run Active File icon in the Toolbar.
∗E-mail: joan.llull@cemfi.es. URL: http://www.cemfi.es/~joanllull. This notes are based on the class notes

used by Enrique Moral-Benito in the academic year 2008-2009; I wish to thank him for providing me with them
and for useful comments.
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1.1. Procedures

A procedure is a piece of self-contained code, isolated from the main program, that performs

an operation used in the main program if it was an intrinsic function1. It is very convenient to

use them when the same operation has to be performed several times; wrapping the operation

into a procedure saves you from entering the same piece of code over and over again.

The structure of a procedure is the following:

proc (number of returns) = NAME(arg list);
local local_variables;
proc definition goes here
other procs, functions, globals, etc.
may be called and referenced
retp(return args);
endp;

We can distinguish 5 different parts:

1. Procedure declaration (PROC Statement). This statement includes, apart from the

proc call itself, its name, its inputs and the shape of its output. It can use more that

one input, in which case they should be separated by commas. The shape of the output

is defined by the number of elements that are provided as a result of the execution.

2. Local variable declaration (LOCAL statement). Local variables, as opposed to global

variables, are those variables that are accessible within the procedure only; once the

procedure is finished a local variable is deleted from the memory and not longer accessible

by the user. Notice that although global variables are accessible within the procedure they

cannot be defined inside it. Therefore, this statement specifies the variables that will be

accessed during this procedure in order to allow GAUSS to add their names into the list

of valid names while this procedure is running. Local variables can take the name of some

local variable; in this case, the local variable takes precedence, so the global variable will

not be accessible during the execution of the procedure.

3. Body of the procedure. The body contains GAUSS statements that are used to

perform the task; it may use intrinsic functions, other procedures...

4. Returns from the procedure (RETP statement). This statement lists the variables
1Intrinsic functions are predefined functions in GAUSS such as ln(x), meanc(x) or stdc(x).
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that conform the output of the procedure. Their number must correspond with the

number of returns declared in the PROC statement.

5. End of procedure (ENDP statement). It tells GAUSS that the definition of the proce-

dure is finished. GAUSS then adds the procedure to its list of symbols, but it does not

do any operation until the main program makes a call to it.

We now illustrate the building and the use of procedures with a small example. We present

a procedure estimate a linear regression with one covariate and the standard error of the

estimates:

proc (2) = regression(x,y);
local betavec,xmat,uhat,sigma,stderr,alpha,beta;
xmat=ones(rows(x),1) x;
betavec=inv(xmat’xmat)*xmat’*y;
alpha=betavec[1];
beta=betavec[2];
retp(alpha,beta);
endp;

Then, in the main program, we can make calls to the procedure in the following way:

{alphahat,betahat}=regression(simx,simy);

where simx and simy are our vectors of data, and alphahat and betahat are the parameters

that we have estimated with the procedure.

1.2. Functions

In GAUSS, functions are single-line procedures which return a single parameter. Therefore,

they are convenient in the same situations as in the case of procedures, though they do not

define local variables.

For instance, if we need to evaluate several times the following function:

f(x, y) = x2 + y3 +

√
x+ y

2

we will create our own function in GAUSS and we will call it funxy by typing:

fn funxy(x,y) = (x^2)+(y^3)+(sqrt(x+y)/2);

where the input variables are x and y and the output variable is funxy. Once we have defined

the function, if we type:
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a = funxy(1,2);

the function will assign to the variable a, the value of the function f(x, y) evaluated at the

point (x = 1, y = 2).

2. Flow of Control

Up to now, we have seen how to write programs in a step-by-step way, i.e, a sequence of

commands that are executed one after another. Now we will learn how to alter this sequence

to make it more flexible.

There are basically two ways of altering the flow of control of the program: loops and

conditional branching2. The former repeats some code until some condition is met; the latter

chooses which part of the code is executed depending on some conditions.

The following figure shows graphically the main idea beyond each of the alternatives:

2.1. Conditional Branching: IF

The syntax of the full if statement is:

if condition1;
Sequence1;
elseif condition2;
Sequence2;
else;
Sequence3;
endif;

2 Procedures and functions also alter this flow in some way by executing a piece of code that has been written
out of the main program.
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but all the elseif and else statements are optional.

It is important to note that each condition is tested in the order in which they appear in

the program. As a result, the condition2 above is, in fact a double condition: sequence2 is

executed if condition1 is not met and condition2 is.

Once the sequence associated with one condition have been executed GAUSS will jump to

the end of the conditional branch code and continue execution from there (i.e., GAUSS will only

execute one set of actions at most). If none of the conditions is met, then no action is taken,

unless there is an else part to the statement, which executes its assigned sequence if none of

the previous conditions are satisfied. Therefore, the implicit condition in the else statement

above is that neither condition1 nor condition1 is fulfilled.

The following example creates a variable called b which will take the value 0 if the variable

a is equal to zero, the value 1 if a is positive and the value -1 otherwise:

if a==0;
b=0;

elseif a>0;
b=1;

else;
b=-1;

endif;

2.2. Loop Statements: WHILE/UNTIL and FOR

A loop is a sequence of statements which is specified once but which is executed several

times in succession. The same sequence will be repeated a fixed number of times (for) or until

some condition is met (while/until).

2.2.1. FOR loops

These loops are used when the number of iterations of the same sequence is fixed and known

in advance. The format of the for loop is:

for i(start,stop,interval);
sequence;

endfor;

For example, imagine that we want to calculate the determinant of the matrix

C =

 2 8 4
9 3 6
1 5 2


by calculating the eigenvalues of the matrix and multiplying them. We can do it with a for

loop as follows:
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c={2 8 4, 9 3 6, 1 5 2};
eigc=eig(c);
determinant=1;
for i(1,3,1);
determinant=determinant*eigc[i];

endfor;

2.2.2. WHILE/UNTIL loops

These loops are often called condition controlled loops because they repeat the sequence of

statements until some condition changes (they are, in some sense, a combination of a for loop

and a conditional if). do while loops iterate until the specified condition becomes false, while

the do until loops finish when the condition becomes true.

What these loops do over and over again is to test whether the condition is satisfied or

not and then, according to that, either they remain iterating or exit, in which case the main

program continues executing the commands placed after the endo; statement.

The syntax of these statements is as follows:

do while condition;
sequence;

endo;

do until condition;
sequence;

endo;

The following example calculates the determinant above by using do while and do until

loops:

c={2 8 4, 9 3 6, 1 5 2};
eigc=eig(c);
determinant=1;
i=1;
do while i<=3;
determinant=determinant*eigc[i];
i=i+1;

endo;

c={2 8 4, 9 3 6, 1 5 2};
eigc=eig(c);
determinant=1;
i=1;
do until i>3;
determinant=determinant*eigc[i];
i=i+1;

endo;
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Exercises

Now, we all now a little bit about programming in GAUSS. Therefore we will write our first

program for solving the only exercise in this lesson.

What is a Monte Carlo simulation?

Suppose we have a model given by a known function fX(x; θ), where x represents the

data and θ the parameters. Monte Carlo simulation randomly generates values for random

variables over and over again to simulate the model. In this case, we simulate S samples of

simulated data by using the function fX . Then, for example, we can calculate some statistics

from these simulated data and see the properties of these statistics. In sum, you may interpret

a Monte Carlo simulation as S controlled experiments which replicate the real world given by

the model.

If the data that we want to simulate is gaussian or uniform, then we have preprogrammed

commands in GAUSS that make the simulation very straightforward (rndu and rndn). However,

in general, we can consider any pdf fX which, of course is not preprogrammed in GAUSS. The

following result tells us how to deal with this issue:

Result:

Let X ∼ F . Then there exists a uniform variable U ∼ U(0, 1) such that X = F−1(U).

Proof:

U = F (X) = F (F−1(U)) = U

Therefore if you want to draw from X, you have to draw from U and then evaluate the

inverse cdf at U .

Kernel Density Estimators

Kernel density estimators belong to a class of estimators called non-parametric density

estimators. In comparison to parametric estimators where the estimator has a fixed functional

form (structure) and the parameters of this function are the only information we need to store,

non-parametric estimators have no fixed structure and depend upon all the data points to reach

an estimate.

To understand kernel estimators we first need to understand histograms whose disadvantages

provides the motivation for kernel estimators. When we construct a histogram, we need to
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consider the width of the bins (equal sub-intervals in which the whole data interval is divided)

and the end points of the bins (where the next bin starts). As a result, the histograms are that

they are not smooth, and their shape depend on the width of the bins and on its end points.

We can alleviate these problem by using kernel density estimators.

To remove the dependence on the end points of the bins, kernel estimators centre a kernel

function at each data point. And if we use a smooth kernel function for our building block,

then we will have a smooth density estimate. This way we have eliminated two of the problems

associated with histograms.

More formally, Kernel estimators smooth out the contribution of each observed data point

over a local neighbourhood of that data point. The contribution of data point xi to the estimate

at some point x depends on how apart xi and x are. The extent of this contribution is depen-

dent upon the shape of the kernel function adopted and the width (bandwidth or smoothing

parameter) accorded to it. If we denote the kernel function as K and its bandwidth by h, the

estimated density at any point x is:

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
where

∫
K(t)dt = 1 to ensure that the estimates f(x) integrates to 1 and where the kernel

function K is usually chosen to be a smooth unimodal function with a peak at 0. Gaussian

kernels are the most often used3. The following picture provides intuition about how a Gaussian

Kernel Estimator does work:

3 The GAUSS command pdfn(x), which calculates the density of x assuming that it follows a N (0, 1)
distribution, can be used for this purpose.

8



Exercise 1: Drawing Random Samples

1. Start a new program in GAUSS. In the first line add the command new;

2. In the next lines, create two scalars, one equal to the sample size (N = 100) and the other

to the number of Monte Carlo simulations (S = 100)

3. Simulate S = 100 random samples of size N = 100 from a N(0, 1) population. (Hint:

GAUSS is a matrix language (it works faster with matrices than with loops), so minimize

the use of loops and maximize the use of matrices.). Note: Everytime you want to

compare different scenarios, (i.e. different bandwidths or different sample sizes) it is good

to have exactly the same samples of random numbers; for this purpose you need to use

the same seed for the random number generator. In GAUSS, place the command rndseed

#; (where # is a number) before starting to simulate.

4. Following the result stated above, simulate S = 100 random samples of size N = 100

from a t(ν) population with ν = 1. (Hint: the GAUSS command cdftci(x,v) calculates

the cumulative density of x if it follows a t(v).)

5. Calculate the sample means of each of the 100 samples for both the normal and the t-

student data; you will obtain two S × 1 vectors of sample means. (Hint: the GAUSS

command meanc(x) generates an N × 1 vector with the sample means of each of the

columns of the N ×M matrix x.)

6. Using a non-parametric kernel density estimator, graph the empirical distribution of the

sample means. You may create a procedure with the kernel function. (Hint: in GAUSS,

if you sum or subtract a row and a column vector, the result is a matrix with elements

(i, j) equal to sum or subtraction of the element i of the column vector and the element

j of the row vector.) What happens with the sample mean in the case of the t-student

population with ν = 1?

7. Try using the sample median instead of the sample mean.(Hint: the GAUSS command

median(x) is the analogous to meanc(x) for the median.)

8. Do the same experiment for the case of an exponential distribution (see the appendix if

you need help on this issue because there is no command in GAUSS for the exponential

cdf...). You may create a function with the inverse of the exponential cdf.
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9. Repeat the exercise using loops instead of matrices. You will realize that it is slower.

Questions: What happens if you change the value of the kernel’s bandwidth? and if you

change the sample size from N = 100 to N = 10000? and if you use ν = 2 and ν = 50 instead

of ν = 1?
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Appendix: Generating Exponential Distributed Data

Exponential with parameter λ:

fX (x) = λe(−λx), x > 0

FX (x) =
(
1− e(−λx)

)
1{x > 0}

where 1{x > 0} is an indicator function that takes the value 1 if the condition x > 0 is satisfied.

E(X) =
1

λ

V AR(X) =
1

λ2

Suppose we want to simulate data from the exponential distribution F .

Let:

x = F−1(u)

Then:

u = F (x) = 1− e−λx

So:

x = − ln(1− u)
λ

where u ∈ U [0, 1].

Here you have a line of code that generates S different samples of size N of exponential

data:

xdata = -(1/lb)*ln(1-rndu(n,s));

11



GAUSS code for the solution of the exercises in
Lecture 1

Page 1 of 1

new;
cls;
@------------------------------------------------------@
@                      EXERCISE 1                      @
@------------------------------------------------------@
A={1 2,3 4,5 6};
B={2 4 6,8 10 12,14 16 18};
C={2 8 4,9 3 6,1 5 2};
D=B*A;
E=D*A';
F=B+C;
G=B.*C;
detc1=det(C);
eigc=eig(C);
detc2=eigc[1]*eigc[2]*eigc[3];
H=A*A';
Hbis=A[.,1]*A[.,1]'+A[.,2]*A[.,2]';
deth=det(H);
rankh=rank(H);
@------------------------------------------------------@
@                      EXERCISE 2                      @
@------------------------------------------------------@
N=1e4;
z=rndn(N,1);
muz=meanc(z);
stdz=stdc(z);

z1=2*z;

muy=3;
stdy=0.5;
y=muy+stdy*rndn(N,1);
@------------------------------------------------------@
@                      EXERCISE 3                      @
@------------------------------------------------------@
library pgraph;
graphset;
x=seqa(1,1,N);

_ptek="graph1.tkf";
title("Graph 1");
xy(x,z);

_ptek="graph2.tkf";
title("Graph 2");
xy(x,z1~z~y);

rn1=rndn(1000,1);
rn2=rndn(1000,1);
x1=seqa(1,1,1000);
_ptek="graph3.tkf";
title("Graph 3");
xy(x1,rn1~rn2);

_ptek="hist_z.tkf";
title("Histogram z");
{ breakpoint,midpoint,frequency } = hist(z,30);

_ptek="hist_z1.tkf";
title("Histogram z1");
{ breakpoint,midpoint,frequency } = hist(z1,30);
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1. Numerical Optimization

Probably the tool that is more often used by economists is optimization. In some cases,

the functional forms of either the objective function or the first order conditions allow us to

solve the problem analytically, but in many other cases they not. In this latter case, we need

to know how to solve the problem numerically, and this is the purpose of this third lesson.

Numerical analysis can be understood as a set of evaluations of some particular function

that allows us to understand the shape of the evaluated expression. For example, imagine that

we are interested in the derivative of a function which we don’t know how to differentiate; we

can use the definition of the derivative,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

and evaluate it (using a sufficiently small h) at many different values of x and then draw a

graph with the results. In fact, we have already done a kind of numerical analysis when we

performed and drew kernel density estimates last week.

1.1. Newton’s method (a.k.a Newton-Raphson method)

The original version of the method is conceived to find the roots of a given function. There

are two very important examples in economics in which we are interested finding the zeroes of
∗E-mail: joan.llull@cemfi.es. URL: http://www.cemfi.es/~joanllull. This notes are based on the class notes

used by Enrique Moral-Benito in the academic year 2008-2009; I wish to thank him for providing me with them
and for useful comments.
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a real-valued function: equating first order conditions to zero to optimize a problem or finding

the fixed point of a function.

The intuition is to approximate the function in a given point, xn by its tangent line, and

then to find the intercept of this line with the x-axis (xn+1). The point of doing so is that xn+1

will be a better approximation of the root than xn:

Let’s see it more formally. Assume that we want to find the root of a function f(x) which

is at least differentiable once. We know that the derivative of the function must be equal to

the slope of the hypotenuse of the triangle above. Therefore:

f(xn)− 0

xn − xn+1

= f ′(xn)⇒ xn+1 = xn −
f(xn)

f ′(xn)
. (1)

This expression provides an iterative rule that we can execute starting from a point reasonably

close to the true root, x0 and updating it with (1) until reaching convergence, i.e. until |xn+1−

xn| < ε with ε arbitrarily small.

1.2. Application of Newton’s method to optimization problems

As noted above, we may be interested in minimizing a function rather than obtaining its

roots. This may be seen as a special case of the previous expression because minimizing a

function is equivalent to finding the roots of its derivative. Therefore, the Newton-Raphson

algorithm for minimization is given by1:

xn+1 = xn −
f ′(xn)

f ′′(xn)
. (2)

1 Notice that in this case we need f(x) to be at least twice differentiable.
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We will see now an alternative interpretation of (2). Consider the following second order

Taylor approximation of f(x) around the point xn:

f(x) ≈ f(xn) + f ′(xn)(x− xn) +
f ′′(xn)

2
(x− xn)2.

The idea is to update our guess, xn, with the minimum of this approximation:

f ′(xn) + f ′′(xn)(x− xn) = 0⇒ xn+1 = xn −
f ′(xn)

f ′′(xn)
,

which provide the updating function from equation(2). Graphically:

1.3. The multivariate case

This method can be used also to multivariate functions. Consider f : RK → RK , at least

once differentiable. We want to solve

f(x) = 0

where f(x) and 0 are K × 1 vectors and x = (x1, ..., xK)′. Then a Newton iteration is:

xn+1 = xn − [f ′(xn)]−1f(xn) (3)

where f ′(.) is the K ×K Jacobian matrix.

For the case of optimization, consider a function g : RK → R at least twice differentiable.

We want to find the vector x = (x1, ..., xK)′ that minimizes g(.). Now a Newton iteration will

be:

xn+1 = xn − [Hg(xn)]−1∇g(xn), (4)

where Hg(.) is the Hessian matrix of g(.) and ∇g(.) is its gradient vector.
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An important remark is due here. Imagine that we can calculate analytically the first

derivative of the function f(x). Then, we have to decide whether to apply (i) equation (3)

on f ′(x) (by calculating the Jacobian of f ′(x) numerically) or (ii) equation (4) on f(x) (by

computing both the gradient and the Hessian numerically). We would always perfer (i). Why?

First, because it is much faster (Hessians can be very costly to compute numerically); and

second, because it is more precise.

2. Optmum library in GAUSS

Optmum is a GAUSS library that optimizes a function with respect to a set of parameters

using Newton’s method we have just seen.

As in the case of graphs, to use the optmum library you have to explicitly include it in

your code by using the command library optmum;. The function to be minimized must be

provided by you and defined in a procedure.

Optmum is called in the same way we called procedures last week:

{arg,obj,grad,retcode}=optmum(&func,start);

The inputs of the procedure are:

start: it is the vector of initial values for the parameters (our x0 above).

&func is a pointer to the procedure that computes the function to be minimized. This

procedure must have one input argument, a vector x, and one output argument, a scalar

f(x).

The output consists of the following:

arg: the vector xmin

obj: the scalar f(xmin)

grad: the gradient ∇f (xmin)

retcode: scalar, return code. If normal convergence is achieved then retcode=0, other-

wise a positive integer is returned indicating the reason for the abnormal termination: 1.

forced exit; 2. maximum iterations exceeded; 3. function calculation failed; 4. gradient

calculation failed; 5. Hessian calculation failed...
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Exercises

We will make use of the optmum library in order to maximize two different functions.

Exercise 1: The Univariate Case

1. Start a new program (new; cls;), create a scalar N = 1000 and load the pgraph and

optmum libraries.

2. Generate a random sample of size N from a normal distribution with µ = 2 and σ = 1.

(Hint: rndn command)

3. Write a procedure with the function:

L(µ) = −
N∑

i=1

(xi − µ)2

2

where µ is the input of the procedure, L(µ) is the output of the procedure and xi (i =

1, ..., N) is i-th element of the vector that you have generated in step 2.

4. Plot the function. Where is the maximum? (Hint: create the support vector with the

seqa command and evaluate the function in this support)

5. By using the optmum library, maximize the function L(µ) with respect to µ. (Hint:

remember that optmum minimizes functions, but maximizing f(x) is equivalent to mini-

mizing −f(x))

6. What is the result?

7. Repeat the step 5 but using very different initial guesses (start). What happens?
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Exercise 2: The Multivariate Case

1. Start a new program (new;) in a new file, create a scalar N = 1000 and load the optmum

library.

2. Generate a random sample of size N from a normal distribution with µ = 2 and σ = 1.

(Hint: rndn command)

3. Write a procedure with the function:

L(µ, σ) = −N
2

ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

where µ and σ are the inputs of the procedure, L(µ, σ) is the output of the procedure and

xi (i = 1, ..., N) is i-th element of the vector that you have generated in step 2. (Remark:

the input of the procedure is now a 2 by 1 vector)

4. By using the optmum library, maximize the function L(µ, σ) with respect to µ and σ.

(Hint: to create the initial guess, proceed as follows: start={5,5};)

5. What is the result?

6. Repeat the step 4 but using very different initial guesses (start). For example try

start={78,95};. What happens?
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GAUSS code for the solution of the exercises in
Lecture 2

Page 1 of 2

@-------------------------------@
@-------------------------------@
@ -        EXERCISE 1          -@
@ -  DRAWING RANDOM SAMPLES    -@
@-------------------------------@
@-------------------------------@

@-----------@
@   STEP 1  @
@-----------@
new; cls;
library pgraph;
graphset;
rndseed 23;                        /* seed for the random number generator *

@-----------@
@   STEP 2  @
@-----------@
n=100;                             /* sample size */
s=100;                             /* number of drawn samples */
h=n^(-1/5);                        /* kernel's bandwidth */

@-----------@
@   STEP 3  @
@-----------@
ndata=cdfni(rndu(n,s));            /* normal data     */
/* or we can also do it by: ndata=rndn(n,s);          */

@-----------@
@   STEP 4  @
@-----------@
v=1;                               /* d.f. of the t distribution */
tdata=cdftci(rndu(n,s),v);         /* t-student data  */

@-----------@
@   STEP 5  @
@-----------@
samplemeansn=meanc(ndata);         /* sample mean with n-data */
samplemeanst=meanc(tdata);         /* sample mean with t-data */

@-----------@
@   STEP 6  @
@-----------@
{tk,sop}=kernel(samplemeanst);
{nk,sop}=kernel(samplemeansn);
xy(sop,tk~nk);                    /* graph of sample mean estimators */

@-----------@
@   STEP 7  @
@-----------@
samplemedianst=median(tdata);        /* sample median with t-data */
{tkm,sop}=kernel(samplemedianst);
/*xy(sop,tk~tkm);*/                      /* graph of sample mean and median 

@-----------@
@   STEP 8  @
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