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I. Introduction

In this Chapter we review models that deal with censored, truncated and se-

lected data. This introductory section, distinguishes the three concepts. In all

cases, we consider a latent variable that is described by a linear model, and that

is only partially observed. Hence, our latent variable y∗ is given by:

y∗ = x′β + ε. (1)

We define (left) truncation as the situation in which we only observe y∗ if it is

above certain threshold. In particular, we observe:

y =

{
y∗ if y∗ > 0

– if y∗ ≤ 0,
(2)

where – indicates that the observation is missing. The threshold is normalized to

zero without loss of generality, as in discrete choice.1 What follows is for the case

of left-truncation; results for right truncation are analogous.

Alternatively, we have (left) censored data in the similar situation in which,

when y∗ is below the threshold, we observe the individuals (and, eventually, the

regressors), but not y∗:

y =

{
y∗ if y∗ > 0

0 if y∗ ≤ 0.
(3)

Finally, we have a selected sample if y∗ is only observable for a particular (non-

representative) subset of the population, which is observable. In this case:

y =

{
y∗ if z′γ + ν > 0

− otherwise,
(4)

and d ≡ 1{z′γ + ν > 0} is observed, where z typically includes at least one

variable that is not included in x (exclusion restriction). In this case, when the

condition for observing y∗ is not satisfied, we still observe the characteristics of

the individual.

1 The threshold could be individual-specific, L = x′δ, in which case the normalization implies
that we would identify β∗ = β − δ instead of β.
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The problem with these situations is that Least Squares estimation no longer

provides consistent estimates of β, even if the linear model is correctly specified.

The bias comes from the fact that E[y|x] is not be equal to x′β.2 In the (left)

truncation case:

E[y|x] = E[y∗|x, y∗ is observed] = x′β + E[ε|x, ε > −x′β]. (5)

The bias comes from the fact that E[ε|ε > −x′β] > 0. In the case of (left)

censoring, defining d = 1{y∗ > 0}:

E[y|x] = E [E(y|x, d)] = Pr[ε > −x′β|x](x′β + E[ε|x, ε > −x′β]), (6)

where we used the fact that E[y|x, d = 0] = 0. Finally, in the case of a selected

sample, using d = 1{z′γ + ν > 0}:

E[y|x] = E[y∗|x, d = 1] = x′β + E[ε|z′γ + ν > 0]. (7)

In this latter case, there is only a bias if E[ε|z′γ + ν > 0] 6= 0, in which case

we talk about endogenous selection; otherwise, selection would be exogenous and

would cause no biases.

II. Censoring and Truncation. The Tobit Model

In this section we deal with the cases of censored and truncated data, and the

next section covers the analysis of selected data. In general, unless otherwise

noted, in this chapter we assume ε|x ∼ N (0, σ2), but this assumption may be

trivially relaxed.

A. Maximum Likelihood Estimation

Both for the cases of censored and truncated data, we can write the likelihood

function if we assume a distribution (we assumed normality) for the error term.

If we have truncated data, the density of y given x a truncated distribution:

g(y|x, y > 0) =
f(y|x)

Pr[y > 0|x]
=

f(y|x)

1− F (0|x)
. (8)

Hence, the log-likelihood function is:

LN(θ) =
N∑
i=1

{ln f(yi|xi)− ln(1− F (0|xi))} , (9)

2 Consistency requires E[y|x] = x′β so that E[β̂OLS ] = E[xx′]−1 E[xE[y|x]] = β.
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where θ includes β and σ2, and where 0 can instead be replaced by any threshold

Li (with the aforementioned identification considerations). In the case of the Tobit

model, the assumption of ε ∼ N (0, σ2) gives:

LN(θ) =
N∑
i=1

{
−1

2
ln 2π − 1

2
lnσ2 − 1

2σ2
(yi − x′iβ)2 − ln Φ

(
x′iβ

σ

)}
, (10)

where we exploited the fact that Φ(−x′iβ/σ) = 1− Φ(x′iβ/σ).

In the case of censored data, we have:

g(y|x, y > 0) = f(y|x)dF (0|x)1−d =

{
f(y|x) if y∗ > 0

F (0|x) if y∗ ≤ 0,
(11)

where d = 1{y∗ > 0} as we defined before. Hence, the log-likelihood function is:

LN(θ) =
N∑
i=1

{di ln f(yi|xi) + (1− di) ln(F (0|xi))} , (12)

and, in the Tobit case:

LN(θ) =

N∑
i=1

{
di

(
−1

2
ln 2π − 1

2
lnσ2 − (yi − x′iβ)2

2σ2

)
+ (1− di) ln

(
1− Φ

(
x′iβ

σ

))}
.

(13)

B. Potential Inconsistency of the MLE

The maximum likelihood estimators described above are only consistent if the

distribution of the residual is correctly specified. This is as usual in ML estimation,

but in this case it is particularly severe. In particular, heteroscedastic or non-

normal errors cause important biases.

In order to get a sense of how important are distributional assumptions in

this context, consider the first order conditions for parameter β in the truncated

sample case:

∂ LN

∂β
=

N∑
i=1

1

σ2

(
yi − x′iβ − σλ

(
x′iβ

σ

))
xi = 0, (14)

where λ(z) = φ(z)/Φ(z) = E[ε|ε > −z] if ε ∼ N (0, 1).3 Note that this coin-

cides with the first order condition of a linear regression model in which we add

σλ(x′iβ/σ) as a control. Hence, we are including two combinations of the same

single index, and identification relies entirely on the choice of the functional form.

3 This is known as the inverse Mills ratio, and it is centerpiece in the next section.
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C. Alternative Methods for Censored Data

Heckman Two-Step Estimator The two-step procedure proposed by Heck-

man (1976, 1979) is commonly used in the context of self-selection. We cover it

in detail when we talk about selection models. However, the analysis of censored

samples can be seen as a special case of self-selection, and, hence, this method

might be applied.

The mean of y conditional on observing y > 0 is:

E[y|x, y∗ > 0] = x′β + σλ

(
x′β

σ

)
. (15)

The two-step procedure is as follows: i) estimate α = β/σ from a Probit over

d ≡ 1{y > 0}; and ii) use α̂ to compute λ(x′α̂), and include it as a control in a

linear regression estimated with uncensored observations to identify β and σ.

Median Regression If we have censored data with less than half of the observa-

tions being censored, we can still make inference on the median of the distribution.

Under a symmetric distribution for y, the median and the mean of the distribu-

tion is governed by the same single-index. This estimator, first proposed by Powell

(1984), is known as the censored least absolute deviations (CLAD) estimator, and

is given by:

β̂CLAD = arg min
β
N−1

N∑
i=1

|yi −max(x′iβ, 0)|. (16)

Symmetrically Trimmed Mean Assume that ε|x is symmetrically distributed,

and, again, that less than half of the observations are censored. Under this as-

sumption we can use the information included in the observations with x′β > 0

(others do not include information on the central part of the distribution). The

probability that, if x′β > 0, then x′β + ε < 0 ⇔ ε < −x′β (i.e. the ob-

servation is censored) is equal to the probability of ε > x′β or, equivalently,

y = x′β + ε > 2x′β.

The Symmetrically Trimmed Mean estimator keeps only observations with pos-

itive mean (x′β > 0), and artificially right-censors these data to compensate for

the left censoring. Given the symmetry, the following moment conditions are

hence satisfied:

E[1{x′β > 0}(min(y, 2x′β)− x′β)x] = 0. (17)

Note that min(y, 2x′β) is equal to zero if y∗ ≤ 0, to y∗ whenever y∗ ∈ [0, 2x′β],

and to 2x′β if y∗ ≥ 2x′β, thus implying symmetric censoring from both tails.
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A moment-based estimation relying on these moments, however, provides mul-

tiple solutions for β̂. Alternatively, it can be proved that the minimization of the

following criterion delivers first order conditions that are sample analogs to the

previous moments:

β̂STM = arg min
β

1

N

N∑
i=1

{[
yi −max

(yi
2
,x′β

)]2
+ 1{yi > 2x′iβ}

[
y2i
4
−max(0,x′β)

]2}
.

(18)

III. Selection

A. The Sample Selection Model

Consider the sample selection situation presented in the introduction. d =

1{z′γ + ν > 0} is an indicator variable that equals 1 if individual’s outcome y∗ is

observed. Hence, we observe y = y∗ × d. Without loss of generality, z includes x

and some other regressors. These additional regressors (and importantly the fact

that ν 6= ε) are the main difference between this model and the Tobit model. We

discuss the importance of these additional regressors below.

We assume: (
ε

ν

)∣∣∣∣z ∼ N
([

0

0

]
,

[
σ2 ρσ

ρσ 1

])
, (19)

where the normalization of the variance of ν is due to the identification problem

of the Probit model for d. The likelihood of our sample is:

LN(θ) =
N∏
i=1

(1− Φ(z′iγ))
1−di {f(yi|zi) Pr(di = 1|yi, zi)}di , (20)

where:

f(y|z) =
1

σ
φ

(
y − x′β

σ

)
and Pr(d = 1|y, z) = Φ

(
z′γ + ρ

σ
(y − x′β)√

1− ρ2

)
. (21)

Notice that we have made use of the conditional distribution of ν given z and ε.

The parameters from the model can be estimated from this likelihood by ML. If

ρ = 0, this likelihood boils down to the product of an OLS regression likelihood

under normality and a Probit likelihood.

B. Heckman Two-Step Estimator

As we pointed out in the introduction, E[y|z] = E[y∗|d = 1, z] 6= x′β, and

hence, OLS is inconsistent. Given joint normality, we can write ε = ρσν + ξ,
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where ξ ∼ N (0, σ2(1− ρ2)) independent of ν; then, building on what we already

developed, we have:

E[y∗|d = 1, z] = x′β + E[ε|z′γ + ν > 0]

= x′β + E[ρσν + ξ|z′γ + ν > 0]

= x′β + ρσλ (z′γ) , (22)

where λ(z) = φ(z)/Φ(z) as described above. The Heckman two-step procedure,

also known as the Heckit, consists of a first stage in which λ (z′γ̂) is constructed

through predictions of a Probit estimation of γ, and a second stage which consists

of an OLS estimation of the linear model augmented with the constructed regressor

estimated in the first stage.

Both OLS and White’s heteroscedasticity-robust standard errors are incorrect

in this context. Consistent estimates of the standard errors need to take into

account both the particular form of heteroskedasticity of the new error term (after

controlling for λ(z′γ̂)), and, more importantly, for the fact that we used γ̂ instead

of γ. The asymptotic formulas for such standard errors are not straightforward,

and it is common to proceed with bootstrap to estimate standard errors.

It is crucial for identification that z includes some regressors that are not in

x. Put differently, we need some variation in the selection equation that only

affects the outcome through the selection, but not directly through the outcome

equation. These are called exclusion restrictions. If we do not have them, we are

in a situation that is analogous to the Tobit model. Although identification is

theoretically achieved (given the functional form assumptions), the inverse Mills

ratio λ(.) is approximately linear over a wide range of its argument. Hence,

especially when there is little variation in z′γ, we are approximately estimating:

E[y|z] ≈ x′β + a+ bz′γ̂, (23)

which, in the case of z = xmay induce multicollinearity. This need of an exclusion

restriction may difficult the possibility of implementing the selection correction,

because sometimes it is not easy to find such an excluded variable.

There are also other important remarks to make about this method. The first

one is that this two-step method is nothing else than the LIML estimation of

the problem in which we specify the likelihood for the observations in which the

outcome is observed using the factorization f(y, d = 1|z) = f(y|d = 1, z) Pr(d =

1|z) instead of the one used in equation (20). As such, estimates are less precise

than if it was estimated with FIML. However, estimation is much simpler. The
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second one is that this estimator itself provides an interesting way of testing for

endogenous selection. Endogenous selection is provided by ρ 6= 0. A simple t-test

of the null hypothesis ρσ = 0 delivers the result. Finally, the third remark is

that we can either change the functional form assumptions or produce a semi-

parametric estimate of λ(z′γ) to control for the endogeneity induced by selection.
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