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I. Introduction

The term panel data is used in econometrics to refer to data sets with repeated

observations for a given cross-section of units. Units can be persons, households,

firms, countries,..., and observations can be repeated over time or other dimensions

(e.g. twins: for each unit —a family– we have two observations —the twins). It

is different from repeated cross-sections in that the same (identifiable) units are

observed at different points in time. In this chapter, we generally use individuals,

denoted by i, to refer to units, and time, denoted by t, to refer to the different

observations we have for a unit.

The main advantages of panel data are two. First, they allow us to deal with

permanent unobserved heterogeneity, i.e. potentially relevant variables that are

fixed over time, but unobserved by the econometrician. Second, it allows us to

analyze dynamic responses and error components. The latter consists of analyzing

separate pieces of the unobserved term (e.g. calculate the variance of the perma-

nent and the transitory parts of the unobservable). The former allow for feedback

from past variables into future outcomes.

Over this chapter, we use the following example. Consider the estimation of the

demand for cigarettes. Let Cit denote the number of cigarettes consumed per day

by individual i in year t, let Pit denote the price at which this person is exposed,

and let Yit denote income level. Holding income level constant might not be

enough to capture systematic differences across individuals. Different individuals

may have different propensity for being a smoker, which might correlate both

with the prices they are exposed to and their income. Thus, the final demand for

cigarettes can be expressed as:

lnCit = β0 + β1 lnPit + β2 lnYit + ηi + vit, (1)

where ηi + vit is a random variable that is not observed by the econometrician,

in which etai is constant for the different observations of a given individual, and

vit is i.i.d. across individuals and over time. We will consider different methods

depending on the assumptions about ηi.
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II. Static Models

We initially consider the static panel data model. Let us first introduce some

general notation. Our model is rewritten as:

yit = x′itβ + (ηi + vit), (2)

where yit and xit are observed by the econometrician, and ηi and vit are not

observed. Sub-indexes are intentionally used both for random variables and for

observations to distinguish variables that are individual and time-varying, con-

stant individual-specific. Let {yit,xit}t=1,...,T
i=1,...,N be our sample. We define yi ≡

(yi1, ..., yiT )′, y ≡ (y′1, ...,y
′
N)′, Xi ≡ (xi1, ...,xiT )′, X ≡ (X ′1, ..., X

′
N)′, ηi ≡ ηiιT

where ιT is a size T vector of ones, η ≡ (η′1, ...,η
′
N)′, vi ≡ (vi1, ..., viT )′, and

v ≡ (v′1, ...,v
′
N)′. Therefore, for our sample, we can rewrite the model as:

yi = Xiβ + (ηi + vi), (3)

for {yi, Xi}Ni=1, or:

y = Xβ + (η + v). (4)

Both compact notations are very useful in derivations.

For static models, we assume the following:

• Fixed effects: E[xitηi] 6= 0, or random effects: E[xitηi] = 0.

• Strict exogeneity: E[xitvis] = 0 ∀s, t. This assumption rules out effects of

past vis on current xit (e.g. xit cannot include lagged dependent variables).

• Error components: E[ηi] = E[vit] = E[ηivit] = 0.

• Serially uncorrelated shocks: E[vitvis] = 0 ∀s 6= t.

• Homoskedasticity and i.i.d. errors: ηi ∼ iid(0, σ2
η) and vit ∼ iid(0, σ2

v), which

does not affect any crucial result, but simplifies some derivations.

A simple approach to estimate β is to ignore the error structure. This is, define

u ≡ η + v, and estimate β by OLS:

β̂OLS = (X ′X)−1X ′y. (5)

The properties of β̂OLS depend on E[xitηi], as E[xitvit] = 0 (xit. If E[xitηi] = 0

(random effects), β̂OLS is consistent as N→∞ or T →∞ or both. However, it

is efficient only if σ2
η = 0, i.e. if ηi = 0 ∀i. If E[xitηi] 6= 0 (fixed effects), β̂OLS
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is inconsistent as N→∞ or T →∞ or both. Note that cross-section results are

also inconsistent, and panel data helps in constructing a consistent alternative.

In our example, this would imply redefining Equation (1) as:

lnCj = β0 + β1 lnPj + β2 lnYj + uj, (6)

where subindex j is used to emphasize that observations it is considered to be in-

dependent from each other. OLS estimation of this equation delivers the following

result (standard errors in parentheses):

OLS

ln Prices (β1) -0.083 (0.015)

ln Income (β2) -0.032 (0.006)

Note that this estimation may suffer from potential problems. Some individuals

may have a higher propensity to smoke than others, everything else equal. This

higher propensity could be correlated with observable factors. For example, maybe

individuals whose parents used to smoke are more likely to smoke, and that may

correlate with income. Likewise, individuals at different ages may have taste

for different brands of tobacco that may have different pricing. In both cases,

these omitted variables introduce some spurious correlation between regressors

and dependent variable that can induce obtaining biased estimates of employment

demands.

A. The Fixed Effects Model. Within Groups Estimation

We first assume correlated (fixed) effects: E[xitηi] 6= 0. As already noted,

OLS estimation of such model delivers inconsistent estimates. As an alternative,

consider the transformation of the model in deviations from individual means,

ỹit ≡ yit − ȳi, where ȳi ≡ T−1
∑T

t=1 yit:

ỹit = (xit − x̄i)′β + (ηi − η̄i) + (vit − v̄i) = x̃′itβ + ṽit. (7)

Note that the transformation eliminates the individual effect, as η̄i = ηi. As a

result, and given our earlier assumptions, E[x̃itṽit] = 0, and OLS on the trans-

formed model delivers consistent estimates. Such estimator is called the within

groups estimator, and can be written as:

β̂WG =
(
X̃ ′X̃

)−1

X̃ ′ỹ. (8)
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This estimator is consistent regardless of whether E[xitηi] 6= 0 or E[xitηi] = 0

if strict exogeneity, E[xitvis] = 0 ∀s, t, is satisfied. Strict exogeneity plays an

important role for consistency when N→∞ and T is fixed. If this assumption

is not satisfied, E[x̃itṽit] 6= 0 even if E[xitvit] = 0. To see it, recall that x̃it =

xit− T−1(xi1 + ...+xiT ), and ṽit = vit− T−1(vi1 + ...+ viT ). Dynamic panel data

models were developed, in part, to relax this assumption.

The consistency of the within groups estimator whether we are in a correlated

or uncorrelated effects situation (when the other assumptions of static models

are satisfied) is an important advantage of the estimator compared to OLS and

GLS (the latter, to be seen below). But this advantage comes at a cost: (i) it

is not efficient if E[xitηi] = 0 when N→∞ but T is fixed (it is efficient when

both N, T →∞), and even if E[xitηi] 6= 0, it is still not efficient, because when

implementing OLS on the transformed model we do not take into account the

autocorrelation introduced from the fact that ṽit includes v̄i in all observations for

individual i; and (ii) it does not allow to identify coefficients for time-invariant

regressors (it also poorly identifies coefficients of almost invariant regressors), and

it only individuals for whom regressors vary for identification of the corresponding

coefficients.

In our example, within groups estimates deliver the following results:

OLS WG

ln Prices (β1) -0.083 (0.015) -0.292 (0.023)

ln Income (β2) -0.032 (0.006) 0.107 (0.019)

The within groups estimator can also be obtained by including a set of N indi-

vidual dummy variables in the regression:

yit = x′itβ + η1D1i + ...+ ηNDNi + vit, (9)

where Dhi = 1{h = i} (e.g. D1i takes a value of 1 for the observations on

individual 1 and 0 for all other observations). OLS estimation of this model gives

estimates that are numerically equivalent to within groups. For this reason, the

within groups estimator is also known as least squares dummy variables estimator.

An alternative transformation of the model that also eliminates the individual

effects is first-differencing:

∆yit = ∆x′itβ + ∆vit, (10)

where ∆yit = yit − yit−1. The fact that this transformation eliminates individual
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effects is evident from that they are time-invariant (∆ηi = ηi−ηi = 0). Therefore,

OLS estimation on the differenced model is consistent. An advantage of first-

differenced least squares is that it only requires E[∆xit∆vit] = 0 for consistency,

which is implied by but weaker than strict exogeneity. However, under the clas-

sical assumptions, within groups is more efficient. First-differenced least squares,

nonetheless, is more efficient if vit is a random walk.

In our example, Least Squares Dummy Variables (LSDV) and and first-differenced

least squares (FDLS) are presented in the following table:

OLS WG LSDV FDLS

ln Prices (β1) -0.083 -0.292 -0.292 -0.413

(0.015) (0.023) (0.023) (0.035)

ln Income (β2) -0.032 0.107 0.107 0.178

(0.006) (0.019) (0.019) (0.055)

Individual 1 (β0 + η1) 2.804

(0.288)

Individual 2 (β0 + η2) 3.455

(0.398)

Individual 3 (β0 + η3) 2.891

(0.416)

Individual 4 (β0 + η4) 2.908

(0.384)

Individual 5 (β0 + η5) 3.490

(0.433)

Individual 6 (β0 + η6) 2.092

(0.325)

Individual 7 (β0 + η7) 1.769

(0.393)

... ...

B. The Random Effects Model. Error Components

Now we turn into the assumption of uncorrelated or random effects: E[xitηi] = 0.

In this case, OLS is consistent, but not efficient. The inefficiency is provided by

the serial correlation introduced by ηi:

E[uituis] = E[(ηi + vit)(ηi + vis)] = E[η2
i ] = σ2

η. (11)

Likewise, the variance of the unobservables is:

E[u2
it] = E[η2

i ] + E[v2
it] = σ2

η + σ2
v . (12)
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Therefore, the variance-covariance matrix of the unobservables is a block-diagonal

matrix formed by elements:

E[uiu
′
i] =


σ2
η + σ2

v σ2
η . . . σ2

η

σ2
η σ2

η + σ2
v . . . σ2

η
...

...
. . .

...

σ2
η σ2

η . . . σ2
η + σ2

v

 = Ωi, (13)

so that:

E[uu′] =


Ω1 0 . . . 0

0 Ω2 . . . 0
...

...
. . .

...

0 0 . . . ΩN

 = Ω. (14)

Under the classical assumptions and random effects, a GLS estimator that in-

corporates this covariance structure, as noted by Balestra and Nerlove (1966), is

consistent and efficient:

β̂GLS = (X ′Ω−1X)−1X ′Ω−1y. (15)

This estimator is unfeasible, as σ2
η and σ2

v are unknown.

Consistency crucially relies on E[xitηi] = 0. To see it, it is convenient to rewrite

β̂GLS as the OLS estimation on the theta-differenced model:

y∗it = x∗it
′β + u∗it, with y∗it ≡ yit − (1− θ)ȳi and θ2 =

σ2
v

σ2
v + Tσ2

η

. (16)

Note that this transformation does not eliminate the individual effect in general, so

if E[xitηi] 6= 0, GLS is inconsistent. This transformation illustrates two interesting

extreme cases: (i) if σ2
η = 0, the estimator boils down to OLS, and, hence, OLS is

efficient; (ii) if T →∞, then θ→ 0, y∗it→ ỹit = yit− ȳit, and the estimator reduces

to within groups. Therefore, within groups is efficient if T →∞.

A feasible GLS estimator is obtained by recovering consistent estimates of σ2
η

and σ2
v . A consistent estimator of σ2

v is provided by the within groups residuals:

ˆ̃vit ≡ ỹit − x̃′itβ̂WG ⇒ σ̂2
v =

ˆ̃v
′ ˆ̃v

N(T − 1)−K
. (17)

To obtain an estimate of σ2
η, we need to recover the residuals of a between groups

estimation, which is the OLS estimation on the cross-section of individual aver-

ages:

ȳi = x̄′iβ + η̄i + v̄i, i = 1, ..., N. (18)
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In particular, σ2
η is recovered from the residuals of that regression, using the

estimated σ̂2
v :

ˆ̄ui ≡ ȳi − x̄′iβ̂BG ⇒ σ̂2
ū =

̂(
σ2
η +

1

T
σ2
v

)
=

ˆ̄u
′ ˆ̄u

N −K
⇒ σ̂2

η = σ̂2
ū −

1

T
σ̂2
v .

(19)

In our example, Feasible GLS results are in the following table:

OLS WG FGLS

ln Prices (β1) -0.083 -0.292 -0.122

(0.015) (0.023) (0.014)

ln Income (β2) -0.032 0.107 -0.012

(0.006) (0.019) (0.004)

C. Testing for Correlated Individual Effects

Given the efficiency advantage of feasible GLS compared to within groups when

the random effects assumption is satisfied, but its inconsistency otherwise, it is

useful to test whether we are in a random or fixed effects situation. As β̂WG is

consistent under the two situations, but β̂FGLS is only consistent in the random

effects case, we can test wether they are similar.

This comparison is done by the Hausman test (Hausman, 1978):

h ≡ q̂′[avar(q̂)]−1q̂
a∼ χ2(K) (20)

under the null hypothesis of E[xitηi] = 0, where:

q̂ = β̂WG − β̂FGLS, and avar(q̂) = avar
(
β̂WG

)
− avar

(
β̂FGLS

)
. (21)

The test requires the classical assumptions to be satisfied, in order to ensure that

feasible GLS is more efficient than within groups.

In our example:

Statistic P-value

Hausman test 24.661 0.000

III. Dynamic Models

We now include feedback from past shocks into future outcomes, relaxing strict

exogeneity. In our cigarette consumption model, one may want to introduce past
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consumption of cigarettes to capture the effect of tobacco addiction (the more you

smoke one period, the more you want to smoke next period). We focus on first

order autoregressive models, but the results can be generalized to other forms of

persistence, and to the inclusion of regressors.

A. Autoregressive Models with Individual Effects

We consider the following model:

yit = αyit−1 + ηi + vit |α| < 1. (22)

We assume that we observe yi0, and, hence, our sample includes observations

for i = 1, ..., N , and t = 1, ..., T . We keep the error components and serially

uncorrelated shocks assumptions (and potentially the homoskedasticity/iid), but

we relax strict exogeneity. Instead, we assume a much weaker condition, namely

predetermined initial condition: E[yi0vit] = 0 for t = 1, ..., T . Note that we are in a

fixed effects situation as E[yit−1ηi] 6= 0 by construction. Likewise, E[yit−1vit−1] 6= 0.

Even if E[yit−1vit] = 0, OLS is biased. In particular:

plim
N→∞

α̂OLS > α, (23)

because E[yit−1ηi] = σ2
η

(
1−αt−1

1−α

)
+ αt−1 E[yi0ηi] > 0. Likewise, within groups is

biased because E[ỹit−1ṽit] 6= 0. In particular:

plim
N→∞

α̂WG < α, (24)

because E[ỹit−1ṽit] = −Aσ2
v < 0, with

(
A =

(1−α)(1+T(1−αt−1−αT−1−t))+αT(1−αT−1)
T 2(1−α)2

)
.

Note that the within groups bias vanishes as T →∞, but, in practice, the bias is

not small even with T = 15. Given the sign of the biases, OLS and within groups

give interesting bounds, and estimators that give α̂ >> αOLS or α̂ << α̂WG should

be seen with suspicion.

A seminal approach to correct these biases was proposed by Anderson and Hsiao

(1981, 1982). Consider the model in first differences:

∆yit = α∆yit−1 + ∆vit. (25)

OLS in first differences is inconsistent, because E[∆yit−1∆vit] = −σ2
v < 0. How-

ever, if the serially uncorrelated shocks assumption holds, E[yit−1vit] = 0 and

yit−2 or ∆yit−2 are valid instruments for ∆yit−1. In particular, they satisfy rel-

evance, as E[∆yit−2∆yit−1] 6= 0 and E[yit−2∆yit−1] 6= 0, and orthogonality, as
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E[∆yit−2∆vit] = E[yit−2∆vit] = 0. Therefore, the Anderson-Hisao estimator is:

α̂AH =
(

∆̂y′−1∆̂y−1

)−1

∆̂y′−1∆y, (26)

where

∆̂y−1 = Z (Z ′Z)
−1
Z ′∆y−1, (27)

and Z is either y−2 or ∆y−2. A minimum of three periods (T = 2 plus yi0)

is needed to implement it. This approach is only efficient if T = 2 (otherwise,

additional instruments are available, as discussed below).

In our example, we redefine the model to be an AR(1) process (for now without

regressors):

nit = αnit−1 + ηi + vit (28)

The Anderson-Hsiao results (together with OLS and WG) are:

OLS WG Anderson-
Hsiao

Lagged cons. (lnCit−1) 0.982 0.884 1.395

(0.003) (0.061) (0.090)

B. A small digression: quick review of Generalized Method of Moments (GMM)

We are interested in a parameter vector β that is defined by the set of moments

(or orthogonality conditions) given by:

E[ψ(x;β)] = 0, (29)

where x is a (vector) random variable, β is the parameter vector, and ψ( ) is

a vector function such that dim(ψ) ≥ dim(β). Therefore, the problem specifies

dim(ψ) moment conditions.

For example, consider a regression model. The parameter vector, β, is such

that:

E[zu] = 0, (30)

where:

u ≡ y − f(x;β), and z ≡ g(x), (31)

with dim(z) ≥ dim(β).

We have a sample of N observations {xi}Ni=1. The estimation is based on the

sample analog of (29):

bN(θ) =
1

N

N∑
i=1

ψ(xi;β). (32)
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The GMM estimator is given by the value of β that minimizes the quadratic

distance of bN(β) from zero:

β̂GMM = arg min
β∈Θ

bN(β)′WNbN(β), (33)

where WN is a squared semi-positive definite weighting matrix that satisfies the

rank condition rank(WN) ≥ dim(β). Note that, if the problem is just-identified,

this is when dim(ψ) = dim(β), the weighting matrix becomes irrelevant, and the

GMM estimator satisfies:

bN(β̂GMM) = 0. (34)

Building on the previous example, consider the linear regression model, i.e.

f(x;β) = x′β. Then:

bN(β) = N−1

N∑
i=1

zi(yi − x′iβ) = N−1Z ′(y −Xβ), (35)

and β̂GMM satisfies:

β̂GMM = arg min
β
N−2(y −Xβ)′ZWNZ

′(y −Xβ) (36)

= (X ′ZWNZ
′X)−1X ′ZWNZ

′y,

which is a familiar expression, as it equals 2SLS if WN = (Z ′Z)−1.

Under some general conditions, β̂GMM is a consistent estimator of β. Addition-

ally, it is asymptotically normal, with the following variance:

avar(β̂GMM) = (D′WD)−1D′WS0WD(D′WD)−1, (37)

where D ≡ plimN→∞
∂bN (β)
∂β′ , W ≡ plimN→∞WN , and S0 ≡ 1

N

∑N
i=1 E[ziuiu

′
iz
′
i].

Even though any semi-positive definite weighting matrix that satisfies the rank

condition provides a consistent estimate of β, not all of them form an efficient

estimator. Efficiency is achieved with any WN that implies W0 = κS−1
0 , for a

positive κ. This includes WN = S−1
0 (unfeasible), but also WN = Ŝ−1

N , where ŜN

is any consistent estimator of S0. In practice, the Optimal GMM estimator is

implemented in two steps:

1) Obtain β̂GMM(W 0
N) for an initial guess W 0

N .

2) Re-estimate using Wopt = (
∑N

i=1 ψ(xi; β̂GMM(W 0
N))ψ(xi; β̂GMM(W 0

N))′)−1

as the new weighting matrix.
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C. Difference GMM Estimation

In a very influential paper, Arellano and Bond (1991), proposed a GMM estima-

tion that uses all available exogenous variation in the estimation. In particular,

they use the fact that for a given period t, not only yit−2 satisfy relevance and or-

thogonality conditions, but also yit−3, ..., yi0 do so. Therefore, the Arellano-Bond

is defined by the following (T − 1)T/2 orthogonality conditions:

E[∆vi2yi0] = 0, E
[
∆vi3

(
yi0
yi1

)]
= 0, . . . , E

∆viT


yi0
yi1
yi2
...

yiT−2



 = 0. (38)

It is convenient to write these moment conditions as E[Z ′i∆vi] = 0, where:

Zi =


yi0 0 0 0 . . . 0 0 . . . 0

0 yi0 yi1 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . .

...

0 0 0 0 . . . yi0 yi1 . . . yiT−2

 and ∆vi =


∆vi2
∆vi3

...

∆viT

 . (39)

The sample analogue is:

bN(α) =
1

N

N∑
i=1

Z ′i∆vi(α), (40)

and the Arellano-Bond estimator is:

α̂GMM = arg min
α

(
1

N

N∑
i=1

∆v′i(α)Zi

)
WN

(
1

N

N∑
i=1

Z ′i∆vi(α)

)
= (∆y′−1ZWNZ

′∆y−1)−1∆y′−1ZWNZ
′∆y. (41)

In order to obtain efficient estimates, the optimal weighting matrix should be

used. The unfeasible optimal weighting matrix is:

WN =

(
1

N

N∑
i=1

E[Z ′i∆vi∆v
′
iZi]

)−1

, (42)

and a feasible and asymptotically equivalent alternative is obtained in two-steps as:

WN =

(
1

N

N∑
i=1

[Z ′i∆̂vi(α̂)∆̂v′i(α̂)Zi]

)−1

. (43)

Windmeijer (2005) proposes a finite sample correction of the variance that takes

into account that α is estimated.
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A common one-step weighting matrix (often used also as a first-step when the

optimal two-step is calculated) uses:

E[∆vi∆v
′
i] = σ2

v


2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0
...

...
...

. . .
...

0 0 0 0 . . . 2

 . (44)

Note that the weighting matrix can be multiplied by any positive scale factor

without affecting the results, so there is no need to know σ2
v .

There are two main shortcomings with this approach. The first one relates to

weak instruments. If α→ 1, relevance of the instruments decreases. As long as

α < 1, the instruments are still valid, but have very poor small sample properties.

Monte Carlo evidence shows that with α > 0.8, the estimator behaves poorly un-

less really huge samples are available. There are alternatives in the literature (like

System-GMM) that mitigate this problem. The second one relates to overfitting.

If T is relatively large compared to N , there might be “too many” instruments.

In that case, we might want to restrict the number of instruments to be used.

In general, it is good practice to check the robustness of the results to different

combinations of instruments.

The GMM results in our AR(1) example (including one-step, two-step, and

two-step with small sample correction) are:

Coefficient Standard Error

Least Squares (OLS) 0.982 (0.003)

Within Groups (WG) 0.884 (0.061)

Anderson-Hsiao 1.395 (0.090)

One-step GMM 1.023 (0.104)

Two-step GMM 0.994 (0.040)

Two-step GMM small sample 0.994 (0.121)

The extension of this approach to models that include regressors is straightfor-

ward. Consider the following model:

yit = αyit−1 + x′itβ + ηi + vit |α| < 1. (45)

We maintain the previous assumptions: error components, serially uncorrelated

shocks, and predetermined initial conditions. Therefore, the moment conditions in

Equation (38) are still valid. Different assumptions regarding xit will add to them

different additional orthogonality conditions. Specifically, xit can be correlated

or uncorrelated with ηi, and xit can be endogenous, predetermined, or strictly
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exogenous with respect to vit. In either of this cases, different instruments will

be used in the new orthogonality conditions. For instance, if assumptions are

analogous to those for yit−1, we may use xit−1 and previous lags as instruments

for xit. In that case, the matrix of instruments would be expanded as follows:

Zi =

yi0 x′i0 x′i1 . . . 0 . . . 0 0′ . . . 0′

...
...

...
. . .

... . . .
...

...
...

...

0 0′ 0′ . . . yi0 . . . yiT−2 x′i0 . . . x′iT−1

 . (46)

In our example, we rewrite the log-cigarette consumption equations as follows:

lnCit = α lnCit−1 + β1 lnPit + β2 lnYit + ηi + vit. (47)

Results are:

OLS WG GMM

Lagged dep (α) 0.947 0.528 0.495

(0.011) (0.064) (0.127)

ln Prices (β1) 0.010 -0.501 -0.607

(0.006) (0.098) (0.143)

ln Income (β2) 0.049 0.369 0.338

(0.011) (0.044) (0.051)

D. System GMM Estimation

The System GMM estimator, proposed by Arellano and Bover (1995) uses the

assumption E[yi0|ηi] = ηi
1−α , which provides additional moment conditions. In

particular, this implies that E[∆yitηi] = 0 for any t, or, equivalently:

E[∆yiT−suiT ] = 0, uiT ≡ ηi + viT , (48)

for s = 1, ..., T−1. Therefore, we rewrite the moment conditions as E[(Z∗)′u∗i ] = 0,

with:

Z∗i =

(
Zi 0 . . . 0

0′ ∆yi1 . . . ∆yiT−1

)
and u∗i =

(
∆vi

ηi + viT

)
, (49)

and the System GMM estimator is:

α̂Sys−GMM =
(
X∗′Z∗WNZ

∗′X∗
)−1

X∗Z∗WNZ
∗′y∗, (50)

where:

X∗i =

(
∆y−1i

yiT−1

)
and y∗i =

(
∆yi
yiT

)
. (51)
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This estimator is more efficient that differenced GMM, as it uses additional mo-

ment conditions. It also reduces the small sample bias, especially when α→ 1.

Adding System-GMM results to the previous AR(1) results:

Coefficient Standard Error

Least Squares (OLS) 0.982 (0.003)

Within Groups (WG) 0.884 (0.061)

Anderson-Hsiao 1.395 (0.090)

One-step GMM 1.023 (0.104)

Two-step GMM 0.994 (0.040)

Two-step GMM small sample 0.994 (0.121)

One-step System-GMM 0.926 (0.023)

Two-step System-GMM small 0.911 (0.032)

E. Specification Tests

There are several relevant aspects for the validity of the estimation that can be

tested formally. The null hypothesis that the orthogonality conditions are satis-

fied (i.e. moments are equal to zero) can be tested in general, as the estimation

problem is typically overidentified (if T > 2). The standard Sargan/Hansen overi-

dentifying restrictions test is applicable (Sargan, 1958; Hansen, 1982). The test

statistic is:

S = N

 1

N

N∑
i=1

ˆ̂u
′
iZi

(
1

N

N∑
i=1

Z ′iûiû
′
iZi

)−1

1

N

N∑
i=1

Z ′i ˆ̂ui

 , (52)

where û are predicted residuals from the first stage and ˆ̂u are those predicted

from the second stage. Under the null, S
a∼ χ2(L−K).

In some cases, we might be more confident on some moment conditions than

others. If the problem is overidentified, we can test whether the results are stable

to the inclusion/exclusion of the orthogonality conditions associated with such

stronger assumptions: if these hold, efficiency is increased by using them, but if

not, the estimator is inconsistent. This suggests again a Hausman test for the

differences in coefficients, like in the random vs fixed effects assumptions. We

can also do an equivalent test from the moments perspective, testing whether the

extra orthogonality conditions evaluated at the estimated parameters are close

enough to zero (incremental Sargan test).

Finally, Arellano and Bond (1991) proposed a direct test for serial correlation

of shocks, whose absence is crucial for the validity of instruments. In particular,
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the null hypothesis of the test is the absence of second order autocorrelation in

the first-differenced residuals. Specifically:

m2 =
∆̂v−2

′
∆̂v∗

se

a∼ N (0, 1), (53)

where ∆v−2 is the second lagged residual in differences, and ∆v∗ is the part of the

vector of contemporaneous first differences for the periods that overlap with the

second lagged vector. Values close to zero do not allow rejection the hypothesis

of no serial correlation.
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