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In this introductory notes we quickly review the necessary notions about Maxi-

mum Likelihood and GMM estimation methods, which were covered in detail the

Econometrics course (first year). Additionally, some numerical methods, which

may be useful for some of the problem sets and in other courses, are very briefly

introduced. In particular, we provide a brief overview of numerical differentiation,

Newton-Raphson optimization, and numerical integration.

I. Maximum Likelihood

A. The Likelihood Principle

The maximum likelihood estimator is based on the likelihood principle. Fol-

lowing this principle, our estimate of the true parameter vector θ0 is given by

the vector θ that maximizes the likelihood of observing our sample (y, X) =

((y1,x
′
1)′, ...(yN ,x

′
N)′)′. This is opposed to least squares, which instead minimize

the sum of squares of residuals. In the case of discrete data, this “likelihood” is

given by the probability of drawing the sample, Pr[y, X;θ], and in the case of

continuous data, it is given by its probability density function (pdf) f(y, X;θ).

Without loss of generality, we use the notation f(y, X;θ) for both cases.

The likelihood function, L∗N(θ) ≡ f(y, X;θ), is a function that maps a param-

eter vector θ and a random sample (y, X) into the probability (or density) that

the sample is obtained from the specified model. The term L∗N(θ) is actually

a compact form of L∗N(θ;y, X). The likelihood function L∗N(θ) = f(y, X;θ) =

f(y|X;θ)f(X;θ) requires specifying the conditional density of y given X for a

given θ, f(y|X;θ), and the marginal density of X, f(X;θ). Under the very gen-

eral assumption that the distribution of X does not depend on the same set of pa-

rameters than the distribution of y —i.e. f(X;θ) = f(X)—, maximizing L∗N(θ) is

equivalent to maximizing the conditional likelihood function LN(θ) = f(y|X;θ).

Maximizing the likelihood LN(θ) is equivalent to maximizing the log-likelihood

function, LN(θ) ≡ lnLN(θ). Let {yi,xi}Ni=1 denote a random sample of indepen-

dent observations, each with the conditional density function f(yi|xi;θ). Then

f(y|X;θ) =
∏N

i=1 f(yi|xi;θ) (given the independence between observations), and
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the conditional log-likelihood function is:

LN(θ) =
N∑

i=1

ln f(yi|xi;θ). (1)

B. The Maximum Likelihood Estimator (MLE)

The maximum likelihood estimator (MLE) is defined by the following optimiza-

tion problem:

θ̂ML ≡ arg max
θ∈Θ

1

N
LN(θ) = arg max

θ∈Θ

1

N

N∑
i=1

ln f(yi|xi;θ). (2)

It is a fully parametric estimator because the distribution of the dependent vari-

able y (given independent variables x) is completely characterized by a set of

parameters and functional forms that we assume to know. This is opposed to

semi-parametric estimators, which make inference on a set of parameters with-

out need of specifying the entire distribution (e.g. OLS allows to estimate the

regression parameters with no need of specifying the distribution of errors), or to

non-parametric estimators, which make inference about some characteristics of

the distribution of the data without parameterizing any element of the distribu-

tion (e.g. the sample average of a variable y calculated with the observations that

satisfy xi = a gives a non-parametric estimate of E[y|x = a]). Additionally, the

MLE belongs to the very general class of estimators called extremum estimators,

which are those obtained as a solution of the optimization problem. Specifically,

it belongs to the sub-class called m-estimators, which maximize an objective func-

tion that is an average of subfunctions of the data: QN(θ) ≡ N−1
∑N

i=1 q(yi,xi,θ).

Another example of an m-estimator is Nonlinear Least Squares (NLS), and an ex-

ample of an extremum estimator that is not an m-estimator is the Generalized

Method of Moments (GMM), which minimizes a quadratic in sample averages.

The solution of the problem in (2) is given by the first order conditions:

1

N

∂ LN(θ̂ML)

∂θ
=

1

N

∂
∑N

i=1 ln f(yi|xi; θ̂ML)

∂θ
= 0. (3)

C. Asymptotic Properties of the MLE

Identification Assume that there is a true parameter vector θ0 that generates

the data. We say that this parameter is identified if there are no observation-

ally equivalent parameters. More formally, θ0 is identified if the Kullback-Leibler
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inequality is satisfied:

Pr[f(y|x;θ) 6= f(y|x;θ0)] > 0 ∀θ 6= θ0. (4)

In words, the true parameter is identified if there is no other parameter vector that

generates the same samples with probability one. Put differently, if there exists

a parameter vector θ 6= θ0 for which any sample we draw (y, X) has a likelihood

equal to f(y|X;θ0), then we say that θ0 is not identified. Identification is an

essential assumption for all the analysis below.

Example: A (stupid) example of non-identified parameters in the linear regres-

sion context is the following:

y = α + γ1 1{x ≤ 0}+ γ2 1{x > 0}+ u, u ∼ N (0, σ2), (5)

where 1{c} is an indicator that equals 1 if the condition c holds, and 0 otherwise.

In this model, α, γ1 and γ2 are not identified because we can increase α by any

amount a and reduce γ1 and γ2 in the same amount and obtain exactly the same

likelihood. Put differently:

f(y|x;α, γ1, γ2, σ
2) = f(y|x;α + a, γ1 − a, γ2 − a, σ2). (6)

for any sample (y,x). As it is impossible to draw a sample {yi, xi}Ni=1 for which

(6) is not satisfied, we conclude that α, γ1 and γ2 are not separately identified if

further restrictions are not imposed (e.g. either α or one γ is normalized to zero).

Regularity conditions Assume: (i) the specified density f(y|x;θ) is the data

generating process (dgp), and (ii) the support of y does not depend on θ. Then

the regularity conditions :

Ef
[
∂ ln f(y|x;θ)

∂θ

]
= 0, (7)

and:

− Ef
[
∂2 ln f(y|x;θ)

∂θ∂θ′

]
= Ef

[
∂ ln f(y|x;θ)

∂θ

∂ ln f(y|x;θ)

∂θ′

]
, (8)

are satisfied. The notation Ef indicates that the expectations are taken with

respect to f(y|x;θ); when evaluated at θ0, these are real expectations, and they

are denoted by E. The left hand side of Equation (8) (evaluated at θ0) is known

as the information matrix, and the associated regularity condition condition is

known as the information matrix equality. The regularity conditions are derived

in Appendix A, and are useful in the derivation of the main results for MLE.
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Consistency Using the first regularity condition and the identification condition

(Kullback-Leibler inequality) it can be proven that:

E[ln f(y|x;θ)] < E[ln f(y|x;θ0)] ∀θ 6= θ0. (9)

This implies that θ0 maximizes the population counterpart of the log-likelihood

function, L0(θ) ≡ E[ln f(y|x;θ)]. Intuitively, the first regularity condition implies

that θ0 is the solution of the population problem, and the identification condition

establishes that this solution is unique (strict inequality).

This result implies consistency. Note that by the Law of Large Numbers (LLN):

1

N

N∑
i=1

ln f(yi|xi;θ)→
p
E[ln f(y|x;θ)]. (10)

As a result, as N→∞, (whenever the parameter space Θ is compact, and LN(θ)

is measurable for all θ) the maximizer of LN(θ), which is θ̂ML, converges to the

maximizer of L0(θ), which is θ0.

Asymptotic distribution To derive the asymptotic distribution of the estima-

tor, we start from the equation that delivers θ̂ML, and expand it with an exact

first order Taylor expansion around θ0:

0 =
∂ LN(θ̂)

∂θ
=
∂ LN(θ0)

∂θ
+
∂2 LN(θ∗)

∂θ∂θ′
(θ̂ − θ0), (11)

where θ∗ is a point between θ̂ and θ0, and ∂2 LN(θ∗)
∂θ∂θ′

is the K×K Hessian matrix for

the log-likelihood evaluated at θ∗. Multiplying the expression by 1/
√
N , noting

that 1/
√
N =

√
N × (1/N), pre-multiplying by the inverse of the Hessian, and

making
√
N(θ̂ − θ0) the subject of the equation we obtain:

√
N(θ̂ − θ0) = −

(
1

N

∂2 LN(θ∗)

∂θ∂θ′

)−1
1√
N

∂ LN(θ0)

∂θ

= −

(
1

N

N∑
i=1

∂2`i(θ
∗)

∂θ∂θ′

)−1

1√
N

N∑
i=1

∂`i(θ0)

∂θ
, (12)

where `i(θ) ≡ ln f(yi|xi;θ).

Assume observations are i.i.d., the conditions for consistency and regularity

conditions hold, and the population Hessian E
[
∂2`(θ0)
∂θ∂θ′

]
exists and is non-singular.

By the LLN, the first term of the left hand side of Equation (12) converges to:

−

(
1

N

N∑
i=1

∂2`i(θ
∗)

∂θ∂θ′

)−1

→
p
−E

[
∂2`(θ0)

∂θ∂θ′

]−1

, (13)

4



as consistency implies that θ∗→
p
θ0 by construction (given θ∗ ∈ [θ̂,θ0] and θ̂→

p
θ0).

By the CLT, the second term of Equation (12) satisfies:

1√
N

N∑
i=1

∂`i(θ0)

∂θ
→
d
N
(

0,E
[
∂`(θ0)

∂θ

∂`(θ0)

∂θ′

])
. (14)

Finally, using the Cramer Theorem, we establish the result:

√
N(θ̂ − θ0)→

d
N (0,Ω0) , (15)

where, given the information matrix equality, Ω0 satisfies:

Ω0 = E
[
∂2`(θ0)

∂θ∂θ′

]−1

E
[
∂`(θ0)

∂θ

∂`(θ0)

∂θ′

]
E
[
∂2`(θ0)

∂θ∂θ′

]−1

= −E
[
∂2`(θ0)

∂θ∂θ′

]−1

= E
[
∂`(θ0)

∂θ

∂`(θ0)

∂θ′

]−1

. (16)

These two versions of the variance-covariance matrix are very useful. The Hessian

version of the formula indicates that the precision of the estimation depends on the

curvature of the likelihood function around θ0. Additionally, since it corresponds

to the inverse of the (Fisher) information matrix, it is the Cramer-Rao lower

bound, which is the lowest variance of unbiased estimators in finite samples. The

Jacobian product version is computationally handy because the partial derivatives

are often computed in the estimation process, and the computation of the Hessian,

which may be time consuming, is avoided.

II. Generalized Method of Moments (GMM)

A. General Formulation

Let θ be the parameter vector of interest, defined by the set of moments (or

orthogonality conditions):

E[ψ(w;θ)] = 0, (17)

where w is a (vector) random variable, and ψ(·) is a vector function such that

dim(ψ) ≥ dim(θ). Therefore, Equation (17) specifies dim(ψ) moment conditions.

Example: Consider a regression model. The parameter vector, β, is such that:

E[zu] = 0, (18)

where:

u ≡ y − f(x;β), and z ≡ g(x), (19)

and dim(z) ≥ dim(β).
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B. Estimation

Consider a random sample with N observations, {wi}Ni=1. The GMM estimation

is based on the sample analog of Equation (17):

bN(θ) ≡ 1

N

N∑
i=1

ψ(wi;θ). (20)

The GMM estimator is given by the value of θ that minimizes the quadratic

distance of bN(θ) from zero:

θ̂GMM ≡ arg min
θ∈Θ

bN(θ)′WNbN(θ), (21)

where WN is a squared semi-positive definite weighting matrix that satisfies the

rank condition rank(WN) ≥ dim(θ). Note that, if the problem is just-identified,

this is when dim(ψ) = dim(θ), the weighting matrix becomes irrelevant, and the

GMM estimator satisfies:

bN(θ̂GMM) = 0. (22)

Example: Building on the previous example, consider the linear regression

model, i.e. f(x;β) = x′β. Then:

bN(β) =
1

N

N∑
i=1

zi(yi − x′iβ) =
1

N
Z ′(y −Xβ), (23)

and β̂GMM satisfies:

β̂GMM = arg min
β
N−2(y −Xβ)′ZWNZ

′(y −Xβ) (24)

= (X ′ZWNZ
′X)−1X ′ZWNZ

′y,

which equals the 2SLS estimator when WN = (Z ′Z)−1.

C. Asymptotic Properties

As GMM is an extremum estimator, the general asymptotic results for this type

of estimators hold. Thus, conditions and derivations are similar to those for MLE.

Consistency Assume the parameter space Θ ∈ IRK is compact, the criterion

function converges in probability to its population counterpart, i.e. WNbN(θ)→
p

W0 E[ψ(w;θ)], and the parameter vector is identified, i.e. θ0 is the only solution

of the population problem W0 E[ψ(w;θ)] = 0. Then, θ̂GMM→
p
θ0.
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Asymptotic distribution Assume consistency conditions are satisfied; θ is in

the interior of Θ; ψ(w;θ) is once differentiable with respect to θ; DN(θ) ≡
∂bN(θ)/θ′ converges in probability to D0(θ), where D0(θ) is continuous at θ = θ0;

for D0 ≡ D0(θ0), the matrix D′0W0D0 is non-singular; and
√
NbN(θ0)→

d
N (0, V0),

with V0 ≡ E[ψ(w;θ0)ψ(w;θ0)′]. Following similar steps as in Section I.C, we can

show that
√
N(θ̂GMM − θ0)→

d
N (0,Ω0), where:

Ω0 = (D′0W0D0)−1D′0W0V0W0D0(D′0W0D0)−1. (25)

Optimal weighting matrix Even though any semi-positive definite weighting

matrix that satisfies the rank condition provides a consistent estimate of θ0, not

all of them form an efficient estimator. Efficiency is achieved with any WN that

implies W0 = κV −1
0 , for a positive κ. This includes WN = V −1

0 (unfeasible), but

also WN = V̂ −1
N , where V̂N is any consistent estimator of V0. In practice, the

Optimal GMM estimator is implemented in two steps:

1) Obtain θ̂GMM(W 0
N) for an initial guess W 0

N .

2) Re-estimate using Ŵopt ≡ (
∑N

i=1 ψ(wi; θ̂GMM(W 0
N))ψ(wi; θ̂GMM(W 0

N))′)−1

as the new weighting matrix.

III. Numerical Methods

This section briefly reviews some of the numerical methods that you will use

in the problem sets. In all cases, there are many alternative methods that could

be implemented. We do not review all of them. See Judd (1998) for detailed

descriptions of many of these algorithms.

A. Differentiation

Although analytical differentiation is always preferred when possible, we might

be interested in numerical differentiation either because of the absence of closed

form solutions, or to avoid tedious and complicated derivations. Numerical differ-

entiation is based on the definition of a derivative:

f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε
. (26)

This suggests the formula:

f ′(x) ≈ f(x+ h)− f(x)

h
, (27)
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for a small h (e.g. 10−6). The expression in Equation (27) is known as a one-sided

differential. A more accurate alternative is the so-called two-sided differential:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
, (28)

even though the extra accuracy comes at the expense of additional evaluations,

which increase the computational burden. Whenever the argument of the function

is a vector, a gradient ∇f (x) needs to be computed. Each element of ∇f (x) is

calculated by perturbing one of the elements of x through a the small scalar h,

leaving all other elements to the baseline value. The additional burden implied

by two-sided differentiation becomes more salient.

B. Newton-Raphson Optimization

The original version of the Newton-Raphson method (a.k.a. as Newton’s method)

was conceived to find the roots of a given function. The extension to optimization

is natural, as optimization consists of finding roots to the first order conditions.

The method is an iterative algorithm that approximates the function in a given

point xn by its tangent line, and then finds the intercept of this line with respect to

the horizontal axis to update the guess and iterate again. The new point xn+1 will

be an improvement as long as the function is globally convex or globally concave.

More formally, assume that we want to find the root of f(x) (which is at least

once differentiable). We know that the derivative of the function must be equal to

the slope of the hypotenuse of the triangle ((xn, 0), (xn, f(xn)), (xn+1, 0)). Hence:

f(xn)− 0

xn − xn+1

= f ′(xn)⇒ xn+1 = xn −
f(xn)

f ′(xn)
. (29)

This function describes an iterative procedure that we can execute starting from

an initial guess until reaching convergence, i.e. until |xn+1− xn| < ε for a small ε.

Given that, as noted above, optimization consists of finding roots for the first

order condition, the Newton step for minimization takes the form of:

xn+1 = xn −
f ′(xn)

f ′′(xn)
. (30)

If the function is f : IRK → IR, at least twice differentiable, the Newton step is:

xn+1 = xn − [Hf (xn)]−1∇f (xn), (31)

where Hf indicates the Hessian of f , and ∇f is the gradient. When the Hessian

is computationally too demanding, there are alternative methods (called Quasi-

Newton methods) that avoid its computation.
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C. Integration

Numerical integration (a.k.a. quadrature) is an approximation to the value of an

integral between two points. In general, the integrand is evaluated at a finite set of

points, called integration points, and the integral is approximated by a weighted

sum of these values. The integration and weights depend on the specific method

used, and on the accuracy required from the approximation. Simple (and less

precise rules) include the midpoint rule, the trapezoidal rule, and the Simpson’s

rule. If the integrand is smooth, Gaussian quadrature formulas are typically more

accurate. An alternative to deterministic quadrature methods is Monte Carlo

integration, that uses uniformly generated random numbers as integration points.

In particular, the method is as simple as drawing a set of random points at which

the function is evaluated, and then, averaging function evaluations.
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Appendix A: Derivation of the Regularity Conditions

The derivation of the two conditions is quite simple. First, note that the density

f(y|x;θ) integrates to one, which implies:∫
f(y|x;θ)dy = 1 ⇒ ∂

∂θ

∫
f(y|x;θ)dy = 0. (A1)

Given assumption (ii), the support of y does not depend on θ, so we can swap

integration and differentiation, which yields:

0 =
∂

∂θ

∫
f(y|x;θ)dy =

(ii)

∫
∂f(y|x;θ)

∂θ
dy. (A2)
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Taking into account that the relationship between the partial derivatives of the

likelihood and the log-likelihood is given by:

∂ ln f(y|x;θ)

∂θ
=

1

f(y|x;θ)

∂f(y|x;θ)

∂θ
⇒ ∂f(y|x;θ)

∂θ
=
∂ ln f(y|x;θ)

∂θ
f(y|x;θ),

(A3)

we substitute this into Equation (A2) to obtain the first regularity condition:∫
∂ ln f(y|x;θ)

∂θ
f(y|x;θ)dy = Ef

[
∂ ln f(y|x;θ)

∂θ

]
= 0. (A4)

Equation (8) is derived from the derivative of the first regularity condition

(Equation (7)) with respect to θ′:

∂

∂θ′

∫
∂ ln f(y|x;θ)

∂θ
f(y|x;θ)dy =

(ii)

∫
∂

∂θ′

(
∂ ln f(y|x;θ)

∂θ
f(y|x;θ)

)
dy =

=

∫ (
∂2 ln f(y|x;θ)

∂θ∂θ′
f(y|x;θ) +

∂ ln f(y|x;θ)

∂θ

∂f(y|x;θ)

∂θ′

)
dy =

=
(A3)

∫ (
∂2 ln f(y|x;θ)

∂θ∂θ′
f(y|x;θ) +

∂ ln f(y|x;θ)

∂θ

∂ ln f(y|x;θ)

∂θ′
f(y|x;θ)

)
dy =

= Ef
[
∂2 ln f(y|x;θ)

∂θ∂θ′

]
+ Ef

[
∂ ln f(y|x;θ)

∂θ

∂ ln f(y|x;θ)

∂θ′

]
= 0. (A5)

Equation (8) is then trivially derived from Equation (A5). �
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