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I. Binary Outcome Models

A. Introduction

In this chapter we analyze several models to deal with discrete outcome vari-

ables. These models that predict in which of m mutually exclusive categories

the outcome of interest falls. In this section m = 2, this is, we consider binary

or dichotomic variables (e.g. whether to participate or not in the labor market,

whether to have a child or not, whether to buy a good or not, whether to take

our kid to a private or to a public school,...). In the next section we generalize

the results to multiple outcomes.

It is convenient to assume that the outcome y takes the value of 1 for cat-

egory A, and 0 for category B. This is very convenient because, as a result,

N−1
∑N

i=1 yi = P̂r[A is selected]. As a consequence of this property, the coeffi-

cients of a linear regression model can be interpreted as marginal effects of the

regressors on the probability of choosing alternative A. And, in the non-linear

models, it allows us to write the likelihood function in a very compact way.

B. The Linear Probability Model

A simple approach to estimate the effect of x on the probability of choosing

alternative A is the linear regression model. The OLS regression of y on x provides

consistent estimates of the sample-average marginal effects of regressors x on the

probability of choosing alternative A. As a result, the linear model is very useful

for exploratory purposes. For example, it provides a good guide to which variables

are statistically significant, and on which sign is its effect. The treatment effects

have turned the popularity of the linear regression model up, as the interest in

that case is on the treatment effect of a variable, and not the predicted probability.

The linear probability model provides consistent estimates of the difference in the

expected outcome with and without a treatment under the relevant assumptions.

However, the linear probability model has two important drawbacks for the anal-

ysis of binary outcomes. The first one is that predicted probabilities p̂(x) = x′β̂

are not bounded between zero and one. The second drawback is that the er-

ror term is heteroscedastic and (given x) has a discrete support. In particular,
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u = −x′β if y = 0 and u = 1−x′β if y = 1; and its variance is x′β(1−x′β), which

depends on x. For this reason, in this chapter we review different alternatives to

the linear probability model that circumvent these drawbacks.

C. The General Binary Outcome Model

In this section we present a very general framework that nests all models that

are covered in this section as special cases. This general notation is useful as many

of the results are general across models.

The conditional probability of choosing alternative A given x is given by:

p(x) ≡ Pr[y = 1|x] = F (x′β). (1)

F (x′β) is a specified function of x′β. The models of this class are called single-

index models, as the argument of the conditional probability function F (·) is

a single index of regressors, x′β. In the linear probability model, the specified

function F (·) is the identity, i.e. F (x′β) = x′β. In the other cases, However,

it is natural to specify F (·) to be a cumulative distribution function (cdf ) to

ensure that 0 ≤ p ≤ 1. This is the case of the Logit and the Probit, that assume

respectively the logistic and the standard normal cdfs:

Logit: F (x′β) = Λ(x′β) =
ex

′β

1 + ex′β
. (2)

Probit: F (x′β) = Φ(x′β) =

∫ x′β

−∞
φ(z)dz. (3)

Maximum Likelihood Estimation We assume a sample of N independent ob-

servations of {yi,xi}Ni=1. Given the binomial nature of the data and the indepen-

dence assumption across observations, a very convenient feature of the binomial

model is that the distribution of the outcome is known: the Bernoulli distribu-

tion. The choice of 0 and 1 for the values of the outcome variable allow us to

write the probability mass function in a very compact way:

g(y|x) = py(1− p)1−y =

{
p if y = 1,

1− p if y = 0,
(4)

where p ≡ F (x′β). Therefore, the log-likelihood is given by:

LN(β) =
N∑
i=1

{yi lnF (x′iβ) + (1− yi) ln (1− F (x′iβ))}. (5)

The ML estimator is obtained from the first order condition of the maximization
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of the previous expression:

∂ LN

∂β
=

N∑
i=1

{
yi

F (x′iβ̂)
f(x′iβ̂)xi −

1− yi
1− F (x′iβ̂)

f(x′iβ̂)xi

}

=
N∑
i=1

yi − F (x′iβ̂)

F (x′iβ̂)(1− F (x′iβ̂))
f(x′iβ̂)xi = 0, (6)

where f(·) ≡ ∂F (z)
∂z

.

There is no explicit solution in general for β̂MLE, so numerical algorithms are

needed. Newton-Raphson procedure usually converges very quickly because the

log-likelihood function is globally concave for probit and logit models.

Asymptotic properties The general ML results are of application in this con-

text. We already know that the distribution of y is a Bernoulli distribution, so

for consistence, we additionally need F (x′β0) to be the correct specification of p.

The true parameter vector needs to be the maximand of the population likelihood

E[y lnF (x′β) + (1− y) ln (1− F (x′β))]:

E
[

y − F (x′β)

F (x′β)(1− F (x′β))
f(x′β)x

]
= E

[
E[y|x]− F (x′β)

F (x′β)(1− F (x′β))
f(x′β)x

]
= 0,

(7)

where the first equality is obtained by applying the law of iterated expectations.

We can easily see that this expression equals 0 if E[y|x] = F (x′β0).

Again, from the general MLE results, β̂→
d
N (β,Ω0/N)), where Ω0 = −E [∂2L/∂β∂β′]−1.

It is very easy to compute this expression using equation (6) and the information

matrix equality:

−E
[
∂2L
∂β∂β′

]−1
= E

[
∂L
∂β

∂L
∂β′

]−1
= E

[(
y − F (x′β)

F (x′β) (1− F (x′β))
f(x′β)

)2

xx′

]−1

= E
[
y2 + F (x′β)2 − 2yF (x′β)

(F (x′β) (1− F (x′β)))2
f(x′β)2xx′

]−1
= E

[
E[y|x] + F (x′β)2 − 2E[y|x]F (x′β)

(F (x′β) (1− F (x′β)))2
f(x′β)2xx′

]−1
= E

[
F (x′β) + F (x′β)2 − 2F (x′β)2

(F (x′β) (1− F (x′β)))2
f(x′β)2xx′

]−1
= E

[
1

F (x′β) (1− F (x′β))
f(x′β)2xx′

]−1
, (8)

where we go from the second to the third line by applying the law of iterated

expectations, and the expression in the fourth line is obtained under the condition
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E[y|x] = F (x′β). It is noteworthy that the previous expression for the variance

of the estimator has the form E[ωxx′]−1, where ω denotes the weights implicit in

the previous expression.

Marginal effects As parameters are, in general, not interpretable in this model

given the implicit normalizations discussed below, our objects of interest are the

marginal effects : the effect of a marginal change in regressor k on the probability

of choosing alternative A:

∂ Pr[y = 1|x]

∂xk
= f(x′β)βk. (9)

Note that, unlike in the linear probability model, where f(x′β) = 1, in any

nonlinear model, marginal effects depend on x, and we may either compute the

sample average marginal effect (i.e. the average over the evaluation of equation

(9) over all observations), the marginal effect for the average individual (i.e. the

evaluation of equation (9) at sample average values x̄), or the marginal effect for

any other “representative” individual with x = x∗.

Estimated coefficients are still carry relevant information. Given that f(x′β) is

a pdf, it is positive for all values of x; therefore, the signs of the marginal effects

are determined by the sign of the estimated coefficients. Additionally, the ratio of

marginal effects for two different regressors are constant across individuals, and

equal to the ratio of the two coefficients:

∂ Pr[y = 1|x]/∂xk
∂ Pr[y = 1|x]/∂xl

=
f(x′β)βk
f(x′β)βl

=
βk
βl
. (10)

The marginal effect for discrete regressors is computed as the difference in pre-

dicted probabilities. In particular, in the case of a dichotomic regressor, the

marginal effect would be computed as:

Pr[y = 1|x−k, xk = 1]− Pr[y = 1|x−k, xk = 0] = F (x′−kβ−k + βk)− F (x′−kβ−k),

(11)

where x−k denote a vector with all regressors in x but xk, and β−k denote a vector

with all coefficients in β but βk.

D. The Logit Model

The logit model is a model of the general class seen in Section I.C in which we

specify the conditional probabilities to be given by the logistic cdf:

F (x′β) = Λ(x′β) =
ex

′β

1 + ex′β
. (12)
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This parametrization is very convenient because the general algebra described in

the previous section is simplified considerably. In particular, a very nice property

of this cdf is that, given that ∂Λ(z)/∂(z) = ez/(1+ez)2 and 1−Λ(z) = 1/(1+ez),

then ∂Λ(z)/∂(z) = Λ(z)(1−Λ(z)). The expression for the first order condition of

the ML estimator reduces to:

N∑
i=1

(
yi − Λ(x′iβ̂)

)
xi = 0. (13)

Interestingly, this expression implies that the residual, y − Λ(x′β̂), is orthogonal

to x, as in the case of OLS.

The expression for the asymptotic variance of β̂MLE is also very simple:

Ω0 = E [Λ(x′β) (1− Λ(x′β))xx′]
−1
. (14)

And the marginal effects are given by:

∂ Pr[y = 1|x]

∂xk
= Λ(x′β)(1− Λ(x′β))βk. (15)

An additional interesting feature of the logit model is that the log-odds ratio is

linear in the regressors:

p =
ex

′β

1 + ex′β
⇔ ln

p

1− p
= x′β. (16)

This expression is interesting because it allows us to interpret β as a semi-

elasticity.1 Additionally, it allows to estimate β with aggregate data under certain

assumptions.

E. The Probit Model

The probit model is a model of the general class described in Section I.C in which

we specify the conditional probabilities to be given by the standard normal cdf:

F (x′β) = Φ(x′β) =

∫ x′β

−∞
φ(z)dz. (17)

The first order conditions for the MLE in this case are:

N∑
i=1

yi − Φ(x′iβ̂)

Φ(x′iβ̂)(1− Φ(x′iβ̂))
φ(x′iβ̂)xi = 0. (18)

1 Given a function h(z), a semi-elasticity gives the percentage change in h(z) in terms of a
change (not percentage-wise) of z.
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The marginal effects are given by:

∂ Pr[y = 1|x]

∂xk
= φ(x′β)βk. (19)

Finally, the asymptotic variance of the estimator is:

Ω0 = E
[

φ(x′β)2

Φ(x′β) (1− Φ(x′β))
xx′
]−1

. (20)

F. Latent Variable Representation

One way to give a more structural interpretation to the model is to conceive

it in terms of a latent measure of utility. A latent variable is a variable that we

do not observe completely. For instance, we can observe the final decision of an

individual but not the intrinsic utility experienced by her. Individual decisions can

be modeled based on their utility function, whose parameters can be estimated

thanks to the revealed preference.

There are two alternative ways of modeling the binary outcome model in terms

of a latent variable. The first one is called the index function model, in which a

threshold on the latent variable determines whether the individual chooses one

alternative or the other (e.g. I buy a product if my utility from buying it is posi-

tive). The second one is called the (additive) random utility model, in which the

individual compares the latent utility associated with the two alternatives and

chooses the one that provides the largest utility. In the binary case, these inter-

pretations are somewhat equivalent, but the distinction between them becomes

relevant in the multinomial case.

Index function model Let y∗ be the latent variable of interest, such that:

y∗ = x′β + u, (21)

where x is a vector of regressors, and u is an unobserved error component with

cdf F (·). We only observe which alternative is chosen by the individual, this is:

y =

{
1 if y∗ > 0,

0 if y∗ ≤ 0,
(22)

where 0 is a normalization of a threshold c, not identified if the model includes

an intercept term.

The probability that we observe y = 1 is given by:

Pr[y = 1|x] = Pr[y∗ > 0|x] = Pr[x′β + u > 0] = Pr[u > −x′β] = F (x′β), (23)
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where the last equality comes from assuming that the pdf of u is symmetric around

zero (e.g. the logistic and the standard normal distributions). This model delivers

the logit model if F (·) = Λ(·), and the probit if F (·) = Φ(·).
In the previous expression, it emerges that a threshold c would not be identified

if the model includes an intercept because we could increase the intercept and

reduce the threshold by the same amount a and the likelihood would not change.

Similarly, the parameters are only identified up to a scale:

Pr[u > −x′β] = Pr[ua > −x′βa]. (24)

Therefore, we have to impose a restriction on the variance of the error term so

that the parameters can be uniquely identified. This restriction is implicit in the

logistic distribution (we impose that the variance is π2/3), and in the case of

normal errors, we typically impose that the variance is 1 so that we work with

the standard normal distribution and the problem reduces to the probit model.

These restrictions have to be taken into account when interpreting the coefficients.

In fact, this is the reason why coefficients themselves are hard to be interpreted

directly and we focus on the marginal effects of each regressor (or the ratio between

two coefficients, which delivers the ratio of marginal effects).

(Additive) Random utility model Consider the utility of the two alternatives:

U0 = V0 + ε0, (25)

U1 = V1 + ε1, (26)

where V0 and V1 are deterministic components of the utility, and ε0 and ε1 are

random components of utility. Instead of observing the utility associated to the

alternatives, we observe:

y =

{
1 if U1 > U0,

0 if U1 ≤ U0.
(27)

The probability that we observe y = 1 is given by:

Pr[y = 1|x] = Pr[U1 > U0|x] = Pr[V1 + ε1 > V0 + ε0|x] (28)

= Pr[ε0 − ε1 < V1 − V0|x] = F (V1 − V0),

where F (·) is the distribution of ε0 − ε1 given x.

We typically express V1 − V0 as a single-index (V1 − V0 = x′β); anyway, if we

were interested in modeling V1 = x′β1 and V0 = x′β0, then V1−V0 = x′(β1−β0),

and only β1−β0 would be identified. The case in which each utility is affected by

different regressors is the particular case of the previous expression in which some
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of the βs take value 0. The case of alternative-varying regressors can be seen also

as a special case, but it is a bit more sophisticated:

Vj = z′jα+x′βj j = 0, 1 ⇒ Pr[y = 1|z,x] = F ((z1 − z0)′α+ x′(β1 − β0)) .

(29)

The parameter vector α is usually assumed to be constant across alternatives,

but it could also be allowed to vary.

Different assumptions on the distribution of the random utility components

deliver different models. A natural choice of error distribution is that ε1 and ε0

are normally distributed; in this case, (ε0 − ε1) is also normally distributed, and

the normalization such that the variance of this difference is the unity delivers

the probit model. Alternatively, if ε1 and ε0 are assumed to be independently

distributed as Type I extreme value (a.k.a. log Weibull), i.e.:

f(εj) = e−εj exp{e−εj}, j = 0, 1, (30)

then (ε0 − ε1) follows a logistic distribution, and the logit model emerges.2

II. Multinomial Models

A. Multinomial Outcomes

In this section we generalize the estimation of models for discrete outcomes to

the case in which individuals choose among m > 2 mutually exclusive alternatives.

Now we have to distinguish between the case in which the available alternatives

are ordered (having zero, one or two/more children; not liking, being indifferent

or loving something;...) or unordered (going to work by bus, train or car; work-

ing, going to school or staying home;...). Most of this section covers the case of

unordered data. The only exception is in Section II.F, where we cover the models

for ordered data.

For notational convenience, we define m binary variables yj for j = 1, ...,m,

each of which take the value of 1 if the category j is selected and zero otherwise.

This is very convenient because, as a result, N−1
∑N

i=1 yij = P̂r[y = j]. The fact

that alternatives are mutually exclusive imply that one and only one of yi1, ..., yim

is equal to one, and the rest are zero.

B. The General Multinomial Model

As in the case of binary outcome models, in this section we present a very

general model that nests the models that are covered below as special cases. This

2 The proof is available at Cameron and Trivedi (2005), Section 14.8.
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general notation is useful because many of the results are general across models.

The conditional probability of choosing alternative j given x is given by:

pj(x) ≡ Pr[y = j|x] = Fj(x
′β), j = 1, ...,m. (31)

Fj(x
′β) is a specified function of x′β such that the predicted probabilities lie

between 0 and 1, and such that
∑

j pj = 1. Different specifications of Fj(·)
correspond to the different models discussed below. The binary model is a special

case in this notation.

Maximum Likelihood estimation We assume a sample of N independent

observations {yi,xi}Ni=1. In this case, y given x follows a multinomial distribution,

which can be written in a very compact way as:

g(y|x) = py11 × p
y2
2 × · · · × pymm =

m∏
j=1

p
yj
j =


p1 if y = 1,

p2 if y = 2,
...

pm if y = m,

(32)

where we omitted that pj’s are functions of x for notational simplicity.

The log-likelihood function is:

LN(β) =
N∑
i=1

m∑
j=1

yij lnFj(x
′
iβ). (33)

The ML estimator β̂MLE is given by the first order conditions:

∂ LN

∂β
=

N∑
i=1

m∑
j=1

yij

Fj(x′iβ̂)
fj(x

′
iβ̂)xi = 0, (34)

where fj(z) ≡ ∂Fj(z)∂(z).

Asymptotic properties We check consistency by showing that the true param-

eter is the solution of the population counterpart of our maximization problem

which is E
[∑m

j=1 yj lnFj(x
′β)
]
. Given that E[yj|x] = pj and

∑
j pj = 1, consis-

tency is achieved if F1(x
′β0), ..., Fm(x′β0) are the correct specification of p1, ..., pm:

E

[
m∑
j=1

yj
Fj(x′β)

fj(x
′β)x

]
= E

[
m∑
j=1

E[yj|x]

Fj(x′β)
fj(x

′β)x

]
= E

[
m∑
j=1

fj(x
′β)x

]
= 0,

(35)

where the first equality is obtained by applying the law of iterated expectations,

the second is provided by assuming E[yj|x] = Fj(x
′β0) is satisfied, and the third

one is obtained by taking partial derivatives to
∑

j pj = 1.
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We can also apply the general MLE results to obtain the asymptotic distribution.

We know that β̂MLE→
d
N (β,Ω0/N), where:

Ω0 = −E
[
∂2L
∂β∂β′

]−1
= E

[
m∑
j=1

(
yj
p2j

∂pj
∂β

∂pj
∂β′
− yj
pj

∂2pj
∂β∂β′

)]−1

= E

[
m∑
j=1

(
1

pj

∂pj
∂β

∂pj
∂β′
− ∂2pj
∂β∂β′

)]−1
, (36)

which is obtained making use of the law of iterated expectations once again.

Marginal effects Marginal effects are calculated analogously to what we have

seen for the binomial case. However, two remarks are noteworthy here. The first

one, is that the sign of the coefficient is not necessarily the same as the sign of the

corresponding marginal effect anymore. The second is that they differ depending

on whether we are talking about an alternative-varying or an alternative-invariant

variable. The marginal effect for the former indicates by how much the proba-

bilities change when the regressor is changed for one alternative leaving constant

its value for the other alternatives. In the case of alternative-invariant regressors,

this ceteris paribus assumption does not hold anymore, as when a regressor is

increased, it is increased for all alternatives equally.

C. The Logit Model

In the case of the logit model, whether regressors vary or not across alternatives

is of practical relevance. The reason is that we can achieve very simple expressions

for the less general case (alternative-invariant regressors) and it is very common

in practice not to have any alternative-varying regressor in the data set.

When regressors are alternative-invariant (i.e. xj = x for j = 1, ...,m), we

typically estimate a single-index model in which the argument of F (·) is x′βj. As

noted below, a normalization is needed for identification, such as β1 = 0. There-

fore, the interpretation of the corresponding coefficients is always with respect

to the normalized or base category. The logit model in which all regressors are

alternative-invariant is called the Multinomial Logit.

If regressors are alternative-varying, we typically assume that β is invariant

across alternatives, and, hence, the index is x′jβ; in this case, we may also inter-

pret the results in terms of a base category by specifying all regressors in devia-

tions with respect to the base category. The logit model with alternative-varying

regressors is known as Conditional Logit.

Although convenient in practice, this distinction is irrelevant from a theoretical

10



point of view, as the alternative-varying model nests the alternative-invariant one.

In particular, we can define a km× 1 vector with zeros everywhere except the jth

block, which is x, i.e. xj = [0′ ... 0′ x 0′ ... 0′]′, and a km × 1 vector in which

each block includes the k regressors of βj, i.e. β = [0′ β′2 ... β
′
m]′, and then we

can work with x′jβ as in the alternative-varying case. This allows us to work with

models in which we have regressors of both types.

The Multinomial Logit (MNL) The multinomial logit model is the applica-

tion of the general model in which we specify:

F (x′βj) =
ex

′βj∑m
l=1 e

x′βl
, j = 1, ...,m. (37)

The probabilities are well behaved in the sense that they lie between 0 and 1, and

the sum of them across (mutually exclusive) alternatives equals one. Regressors

are alternative-invariant.

Each set of first order conditions for the minimization problem reduces to:

∂ LN

∂βh
=

N∑
i=1

m∑
j=1

yij
pij
pij(δjh−pih)xi =

N∑
i=1

m∑
j=1

yij(δjh−pih)xi =
N∑
i=1

(yih−pih)xi = 0,

(38)

where δjh = 1{j = h}, and 1{A} is an indicator function that takes the value of

1 if A is satisfied and 0 otherwise. We make use of the fact that
∑m

j=1 yijδjh = yih

and
∑m

j=1 yijpih = pih
∑m

j=1 yij = pih. This expression is equivalent to the one

we obtained for the binomial logit except that the probabilities pih are computed

using (37) instead of (12).

Given that
∑m

j=1 pj = 1, we have to do a normalization to ensure identification.

We can easily see that p1 = 1 −
∑m

j=2 pj = 1 −
∑m

j=2
ex

′βj∑m
l=1 e

x′βl
= ex

′β1∑m
l=1 e

x′βl
. This

leaves us with only m−1 instead of m independent vectors of first order conditions

like (38). We typically set β1 = 0. This is relevant because results for alternatives

j = 2, ...,m need to be interpreted in comparison to the base category.

The information matrix −E [∂2L/∂β∂β′] is defined by blocks, each correspond-

ing to −E [∂2L/∂βh∂β′l]. Thus, differentiating (38) with respect to β′l, we obtain:

− E
[
∂2L/∂βh∂β′l

]
= E [ph(δhl − pl)xx′] =

{
E[ph(1− pl)xx′] if h = l,

E[−phplxx′] if h 6= l,
(39)

for h = 1, ...,m and l = 1, ...,m, and the asymptotic variance of the estimator is

given by −E [∂2L/∂β∂β′]−1.
The marginal effects in this model are the effect of changing a regressor by one
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unit on the probabilities of choosing each alternative:

∂pj
∂xk

= pj

(
βjk −

m∑
h=1

phβhk

)
≡ pj(βjk − β̄pk). (40)

The term β̄pk is a probability weighted average of alternative-specific βjks, using

the choice probabilities p as weights. From this expression we can see that the

sign of a parameter estimate does not necessarily correspond to the sign of the

effect of an increase in the regressor on the probability of choosing this alternative,

and, in that sense, it does not make much sense to test whether a coefficient is

different from zero or not. More subtly, the sign of the individual marginal effects

can differ across individuals, as the weighted average β̄p uses individual-specific

choice probabilities as weights.

The Conditional Logit (CL) The conditional logit model is the application of

the general model in which we specify:

Fj(x
′β) =

ex
′
jβ∑m

l=1 e
x′
lβ
, j = 1, ...,m. (41)

As in the MNL, the probabilities are well behaved in the sense that they lie

between 0 and 1, and sum to one. As in the MNL, given
∑m

j=1 pj = 1, we can

rewrite these probabilities in terms of a base category (although in this case we do

not have to do it explicitly for identification, one of the categories is redundant).

For instance, we can set j = 1 as the base category, in which case we can rewrite

the model with the variables in deviations from x1, i.e. x̃j ≡ (xj − x1) (and

hence set x̃1 = 0) so that there is no redundant category. This gives the correct

interpretation of the estimates, which is with respect to the base category.

The first order conditions in this case are given by:

∂ LN

∂β
=

N∑
i=1

m∑
j=1

yij
pij
pij(xij −

m∑
h=1

pihxih) =
N∑
i=1

m∑
j=1

yij(xij − x̄pi) = 0, (42)

where x̄pi ≡
∑m

h=1 pihxih.

The expression for the asymptotic variance can be obtained by using the infor-

mation matrix equality:

Ω0 = E

[
m∑
l=1

m∑
j=1

yjyl(xj − x̄)(xl − x̄)′

]−1

= E

[
m∑
j=1

y2j (xj − x̄)(xj − x̄)′

]−1
= E

[
m∑
j=1

pj(xj − x̄)(xj − x̄)′

]−1
, (43)
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where we use the law of iterated expectations, the 0/1 nature of the variable y,

so that E[y2j |xj] = E[yj|xj] = pj, and that yjyl = 0 ∀j 6= l.

Finally, the marginal effects are given by:

∂pj
∂xhk

= pj(δjh − ph)βk =

{
pj(1− pj)βk if j = h,

−pjphβk if j 6= h.
(44)

Therefore, in this case, the sign of the own marginal effects is the same as the sign

of βk, while the sign of the cross effects is opposite to the sign of the coefficient.

D. Latent Variable Representation

The latent variable representation in the multinomial context is based on the

Additive Random Utility Model (ARUM). As in the binary outcome case, consider

the utility of choosing alternative j as the sum of a deterministic or observable

component and a random component:

Uj = Vj + εj, j = 1, ...,m. (45)

We define the deterministic component as a single-index Vj ≡ x′βj or Vj ≡ x′jβ.

Individuals choose the alternative that gives them the highest utility. Therefore,

the probability that they choose alternative j is given by:

Pr[y = j|x] = Pr[Uj ≥ Uh ∀h 6= j|x] (46)

= Pr[εh − εj ≤ −(Vh − Vj) ∀h 6= j|x] ≡ Pr[ε̃hj ≤ −Ṽhj ∀h 6= j|x],

where we define z̃hj = zh − zj.
Different multinomial models can be generated by different assumptions on the

joint distribution of the error terms. The probabilities are computed with the

corresponding cdfs. For instance, in the three-choice model, the probability of

choosing alternative 1 is given by:

Pr[y = 1|x] = Pr[ε̃21 ≤ −Ṽ21, ε̃31 ≤ −Ṽ31|x] =

∫ −Ṽ31
−∞

∫ −Ṽ21
−∞

f(ε̃21, ε̃31)dε̃21dε̃31.

(47)

Computing m − 1 dimensional integrals is computationally demanding, and the

computational burden increases exponentially as we increase the number of avail-

able choices. This complexity favors logit models as opposed to probit models

when the number of alternatives is large (even when the normality is a more nat-

ural assumption for the errors than the extreme value) because they often provide

analytical solutions to the integrals.
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The MNL and the CL are obtained by assuming that errors ε1, ..., εm are inde-

pendently and identically distributed as a Type I extreme value, as in the binomial

case. The independence assumption implies that the joint distribution of error

differences can be factorized and, hence, the multiple dimensional integral reduces

to the product of one-dimensional integrals.

As discussed below, we may allow the random components to be correlated. In

this case, some covariance restrictions are necessary, as the model is only identified

up to m − 1 error-difference pairs. Additionally —for the same reason as in the

the binomial case—, one variance needs to be imposed, as Uj is only determined

up to scale.

E. Relaxing the Independence of Irrelevant Alternatives Assumption.

The assumption of uncorrelated ε1, ..., εm from the MNL and CL models is

known as independence of irrelevant alternatives (IIA). The implication of the IIA

is that the problem is reduced to a comparison between any pair of alternatives.

This assumption is often seen as too restrictive. A well known extreme example

is known as the red bus-blue bus problem. Consider that we are analyzing the

choice of the transportation mean used to commute: car, red bus or blue bus. The

only difference between red and blue bus is the color. The MNL and CL models

assume that the conditional probability of commute by car given commute by car

or red bus (Pr[car|car or red bus]) is independent of whether there is a blue bus

option or not. In other words, if the alternatives were only car or red bus, we

could estimate a (binary) logit on this:

Pr[c|c∪rb] =
Pr[c]

Pr[c ∪ rb]
=

ex
′βc∑m

j=1 e
x′βj

ex
′βc∑m

j=1 e
x′βj

+ ex
′βrb∑m

j=1 e
x′βj

=
ex

′βc

ex′βc + ex′βrb
=

ex
′(βc−βrb)

1 + ex′(βc−βrb)
.

(48)

However, in practice, one would expect that introducing the blue bus would have

a larger effect on the red bus commuting than on car commuting. This should

increase Pr[car|car or red bus], as the introduction of the blue bus “steals” more

observations to the red bus than to the car alternative. In this section we discuss

some of the most popular models that break the IIA assumption.

The Nested Logit (NL) This is the most analytically tractable of the gen-

eralizations of the multinomial model. It is ideal when there is a clear nesting

structure, although this is not the case of all applications. The nested logit model

breaks the decision tree into limbs and branches; IIA is assumed only between

14



limbs, a fixed correlation within each limb is estimated. Here we discuss the

model with two levels, but it could be generalized to introduce further levels.

The decision tree is as follows. First, the individual chooses a limb j among

the available J limbs (e.g. college or work). Then, she chooses one of the Hj

branches available within limb j (e.g. if she chooses to work, which occupation; if

she chooses to go to college, which college). Hence, the joint probability of being

in limb j and choosing branch h is the product of the probability of being in limb

j times the conditional probability of choosing branch h given that limb j have

been chosen.

We consider a single-index with regressors that vary across limbs and branches

and others that only vary across limbs:

Vjh ≡ z′jα+ x′jhβj, h = 1, ..., Hj, j = 1, ..., J, (49)

where z′j only vary across limbs and x′jh vary across limbs and branches. This

variation is important for identification. It can also be adapted to alternative

invariant regressors by considering Vjh ≡ z′αj + x′βjh.

In the nested logit model, the probability of choosing alternative jh is given by:

pjh = pj × ph|j =
exp

(
z′jα+ ρjIVj

)∑J
l=1 exp (z′lα+ ρlIVl)

×
exp

(
x′jhβj/ρj

)∑Hj
r=1 exp

(
x′jrβj/ρj

) , (50)

where:

IVj = ln

 Hj∑
r=1

exp
(
x′jrβj/ρj

) . (51)

This expression can be derived from the latent variable representation by assuming

that ε1, ..., εm are distributed according to a particular type of generalized extreme

value distribution (see, for instance, Cameron and Trivedi, Chapter 15.6). Param-

eters ρj are known as scale parameters (as opposed to the regression parameters

α and βj) because they scale the regression parameters in the previous expres-

sion. They are associated with the correlation between random components of

the branch j; in particular, ρj =
√

1− Corr(εjh, εjl). The term IVj is known as

the inclusive value.

The log-likelihood function is rewritten as:

LN(α,β1, ...,βJ , ρ1, ..., ρj) =
N∑
i=1

J∑
j=1

yij ln pij +
N∑
i=1

J∑
j=1

Hj∑
h=1

yijh ln pih|j. (52)

The ML estimator obtained from maximizing this log-likelihood function is known

as Full Information ML (or FIML).
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A nice characteristic of the previous expression is that the probabilities pj and

ph|j are of conditional logit form. For the times (or cases) in which the compu-

tation of the FIML estimator was (or is) challenging, a Limited Information ML

(LIML) or sequential estimator that takes advantage of this feature was proposed.

The method consists of two stages. In the first stage βj/ρj are estimated from

conditional logits for the conditional probabilities in each of the limbs. The second

stage consists of a conditional logit across limbs with the predicted inclusive value

ÎV jh as an added regressor; this second stage delivers α̂ and ρ̂j, and β̂j is recov-

ered combining β̂j/ρj and ρ̂j. This method is less efficient but still consistent;

standard errors need to be corrected for the fact that estimates of the inclusive

value instead of real values are used in the second stage. This method is also very

useful to produce starting values to the FIML estimation, as the log-likelihood in

equation (52) is not globally concave.

Random Parameters Logit (RPL) The random parameters logit (RPL) model

specifies the utility of individual i of choosing alternative j to be:

Uij = x′ijβi + εij, βi ∼ N (β,Σβ), (53)

where εij are i.i.d. Type I extreme value as for the CL model. The difference

with CL is that it permits parameters β to be random. Although the normality

assumption is the most common, there are other alternatives when the support of

the parameters is not [−∞,∞].

To see how this model generates correlation between unobservables across al-

ternatives, we can rewrite the model as follows:

Uij = x′ijβ + νij; νij = x′ijui + εij, ui ∼ N (0,Σβ). (54)

Then, the covariance between unobservables is Cov(νij, νih) = x′ijΣβxih for j 6= h.

In most of the applications, Σβ is specified to be diagonal and, additionally, some

of the diagonal values are set to zero (i.e., some parameters are assumed to be

deterministic).

Given the extreme value assumption, the probability for individual i of choosing

j is expected to be:

pij =

∫
ex

′
ijβi∑m

l=1 e
x′
ilβi

φ(βi;β,Σβ)dβi, (55)

where the integral is k-dimensional, and φ(βi;β,Σβ) denotes the k-variate normal

density with mean β and variance Σβ.3 The log-likelihood has the general form

3 In practice, the dimension of the integral is given by the parameters with non-zero variance,
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seen in Section II.B, and the parameters of interest are β and Σβ. However, there

is no closed form solution to the integral, and simulation methods are needed. A

common and simple simulation method uses Monte-Carlo integration:

L̂N(β,Σβ) =
N∑
i=1

m∑
j=1

yij ln

[
1

S

S∑
s=1

ex
′
ijβ

(s)
i∑m

l=1 e
x′
ilβ

(s)
i

]
, (56)

where β
(s)
i for s = 1, ..., S are random draws from the density φ(βi;β,Σβ). Given

that β and Σβ are unknown, this estimation is an iterative problem.

Multinomial Probit (MNP) An obvious way to introduce correlation of unob-

servables across alternatives is to specify them to be distributed as a multivariate

normal, ε ∼ N (0,Σ). Different models arise from different assumptions on Σ.

Even though off-diagonal elements can be set to non-zero values, some restric-

tions need to be placed for identification. From the ARUM we know that choices

are determined by differences in utilities; for this reason, some elements of Σ (at

least all the corresponding elements of the base category plus one variance) are not

identified. The most common normalization is to set one of the variances —and

hence all covariances involving this alternative— equal to zero, and to fix an ad-

ditional parameter (e.g. , in the bivariate case, σ11 = σ12 = 0 and σ22 = 1, which

leads to ε2− ε1 ∼ N (0, 1), the binary probit model). If regressors are alternative-

invariant, additional restrictions may be needed to avoid obtaining very imprecise

estimates.

The conditional choice probabilities are given by the (m−1)-dimensional integral

over the normal distribution. For instance, if m = 3:

Pr[y = 1|x] =

∫ −Ṽ31
−∞

∫ −Ṽ21
−∞

φ(ε̃21, ε̃31; 0,Σ)dε̃21dε̃31. (57)

The absence of closed form for this integral requires the use of simulation methods

such as Monte Carlo integration to evaluate the log-likelihood, as in the case of

the RPL:

L̂N(β,Σ) =
N∑
i=1

m∑
j=1

yij ln p̂ij, (58)

where p̂ij are obtained using Monte-Carlo simulation.

F. Ordered Outcomes

All the previous analysis in this section is developed for unordered outcomes.

We have seen a latent variable interpretation of all this by means of the ARUM.

which may be a subset of K.
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The analysis of ordered multinomial outcomes corresponds to the index function

latent variable interpretation that we have seen for binomial models. So consider

the index function model for the latent variable y∗:

y∗ = x′β + u, u|x ∼ F (·). (59)

The variable that we observe is y, which is given by:

y = j if αj−1 < y∗ ≤ αj. (60)

Therefore, the probability of choosing alternative j is given by:

Pr[y = j|x] = Pr[αj−1 < y∗ ≤ αj|x] = Pr[αj−1 − x′β < u ≤ αj − x′β|x]

= F (αj − x′β)− F (αj−1 − x′β). (61)

The parameters are then estimated by maximizing the general log-likelihood func-

tion given by these probabilities.

III. Endogenous Variables

There are several approaches to deal with endogeneity of regressors in the con-

text of discrete choice. The most common way to proceed is to assume normality

and proceed with a probit model. However, either if the number of endogenous

variables is large or if the outcome variable is a large-dimensional multinomial out-

come, this may be unfeasible or may impose too much structure. An alternative

is GMM. We discuss both methods.

For simplicity, we proceed throughout this section with a binary outcome and

only one endogenous regressor. Results may be generalized both to multinomial

outcomes and to several endogenous regressors.

A. Probit with Continuous Endogenous Regressor

Consider the model:

y1 = 1{x′α+ βy2 + ε ≥ 0}, (62)

y2 = z′γ + ν, (63)

where z strictly contains x, and:(
ε

ν

) ∣∣∣∣z ∼ N (0,

[
1 ρσ

ρσ σ2

])
. (64)
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Note that endogeneity is introduced by ρ 6= 0. To see it, note that the condi-

tional distribution of ε given z and ν is given by:

ε|z, ν ∼ N
(ρ
σ
ν, 1− ρ2

)
. (65)

Using this expression, we can factorize the conditional likelihood function as

f(y1|z, y2)f(y2|z). Therefore, the log-likelihood of a random sample of N in-

dependent observations conditional on Z is:

LN(α, β, ρ, σ,γ) ∝
N∑
i=1

{
y1i ln Φ (a) + (1− y1i) ln [1− Φ (a)]− lnσ − (y2i − z′iγ)2

2σ2

}
,

(66)

where a =
x′
iα+βy2i+

ρ
σ
(y2i−z′iγ)√

1−ρ2
.

The parameter vector θ ≡ (α′, β, ρ, σ,γ ′)′ can be estimated by ML on the pre-

vious expression. If this is costly or the log-likelihood is not very well behaved,

we may proceed in two steps, with a LIML estimation. The estimates obtained

by the two-step estimation are less efficient, but still consistent. Standard errors

of the second stage should be corrected to account for the fact that we are using

estimates of ν instead of observed values.

B. Probit with Binary Endogenous Regressor

In this case, the model is:

y1 = 1{x′α+ βy2 + ε ≥ 0}, (67)

y2 = 1{z′γ + ν ≥ 0}, (68)

where z strictly contains x, and:(
ε

ν

) ∣∣∣∣z ∼ N (0,

[
1 ρ

ρ 1

])
. (69)

This is, in fact, a bivariate binomial Probit. There is no two-step procedure to

estimate the parameter vector, and, hence, the estimation should be performed

by maximizing the conditional log-likelihood, which is given by:

LN(α, β,γ, ρ) =
N∑
i=1

{y1iy2i lnP11i + (1− y1i)y2i lnP01i+ (70)

+y1i(1− y2i) lnP10i + (1− y1i)(1− y2i) lnP00i} ,
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where:

P00 ≡ Pr[y1 = 0,y2 = 0|z] = Φ2(−x′α,−z′γ; ρ), (71)

P10 ≡ Pr[y1 = 1,y2 = 0|z] = Pr[ε ≥ −x′α|y2 = 0, z] Pr[y2 = 0|z]

= (1− Pr[ε ≤ −x′α|y2 = 0, z]) Pr[y2 = 0|z]

= Φ(−z′γ)− P00, (72)

P01 ≡ Pr[y1 = 0,y2 = 1|z] = Pr[y2 = 1|ε ≤ −x′α− β, z] Pr[ε ≤ −x′α− β|z]

= (1− Pr[y2 = 0|ε ≤ −x′α− β, z]) Pr[ε ≤ −x′α− β|z]

= Φ(−x′α− β)− Φ2(−x′α− β,−z′γ; ρ), (73)

P11 ≡ Pr[y1 = 1,y2 = 1|z] = 1− P00 − P10 − P01, (74)

and Φ2(., .; ρ) indicates the cdf of a bivariate standard normal distribution with

correlation parameter ρ. Simulation-based methods can be used to obtain the

different probabilities.

C. Moment Estimation

A different approach to handle endogeneity is with a moment-based estimation

instead of ML. Assuming that probabilities are correctly specified, we can consider

an estimator that is the solution of:

N∑
i=1

m∑
j=1

(yi − pij)zi = 0, (75)

where z strictly contains the set of exogenous regressors and is of the same dimen-

sion as the vector of regressors.4 This estimator is consistent, and its efficiency

depends on the choice of z. It is worth noting that equation (75) coincides with

the expression for the MNL estimator if z = x.

IV. Binary Models for Panel Data

Consider the binary choice panel data model with individual effects:5

yit = 1{x′itβ + ηi + vit > 0}. (76)

This is a non-linear panel data model. In particular, it belongs to the subclass in

which errors are not additively separable. This distinction is important because

4 If we have more instruments than regressors, when our GMM problem is overidentified,
and the estimator is the result of minimizing a combination of the kz > kx conditions given by
the equation (75).

5 We retake the convention of using subscripts for random variables in the panel data context.

20



additively separable models allow the construction of moment conditions that

mimic the linear ones. This is not the case for non-additively separable models.

The estimation problem can be addressed from a fixed effects or a random

effects perspective (in the sense of treating ηi as parameters to be estimated or

as a random variable from a given distribution). From a fixed effects perspective,

the log-likelihood is:

LN(β,η) =
N∑
i=1

T∑
t=1

{yit lnF (x′itβ + ηi) + (1− yit) ln (1− F (x′itβ + ηi))}. (77)

In this case, the vector of fixed effects, η, is a vector of nuisance parameters, this

is, parameters that are not of immediate interest, but which must be accounted

for in the analysis of those parameters which are of interest. The problem with

this approach, however, is that the number of nuisance parameters to estimate

becomes very large when N is relatively large compared to T . Often, we get rid of

these parameters through the concentrated likelihood, LN(β, η̂(β)), where η̂(β)

is the MLE of η for a given β.

Another approach is from the random effects perspective. In this case, we

optimize the integrated likelihood, like in the Random Parameters Logit case.

Specifically:

LN(β) =
N∑
i=1

T∑
t=1

ln

∫
f(yit|xit;β, ηi)g(ηi;γ)dηi, (78)

where g(ηi;γ) can or cannot be the pdf of ηi. In the latter case, LN(β) is a pseudo-

likelihood that can still deliver consistent estimates as N→∞ and T →∞, but

that produces inconsistent estimators as N→∞ for fixed T . In particular, it

produces biases of order 1/T . This situation is known as the incidental parameters

problem and it is of particular concern when T is small relative to N . This problem

also applies to the fixed effects case, as the concentrated likelihood can indeed be

expressed in the form of (78) with a specific functional form for g. The incidental

parameters problem is one of the main challenges in modern econometrics.
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